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 1 Introduction

Extreme heat events (EHE), some of which are commonly known as “heat waves”, are an issue of 

increasing concern and research in recent years, especially after the high mortality experienced during a 

series of European EHE in 2003 and 2006 (Fouillet et al. 2008; Kovats and Hajat, 2008). Recently 

published climate models predict increases in the frequency, duration and, especially, the intensity of EHE 

in the latter half of this century (Gosling et al. 2008). Meehl and Tebaldi (2004) have noted that these 

changes are expected to affect the Mediterranean area disproportionately. 

Urban Heat Islands refer to the phenomenon in which urban areas are warmer than surrounding, non-

urban areas. Over time, using more sophisticated instruments, it has become clear that heat is not 

distributed uniformly throughout urban areas, and the heterogenous nature of this distribution gives rise 

to micro-urban heat islands (MUHI), areas of more intense heat within an urban zone.

The research question addressed in this study is the following: Are micro-urban heat islands associated 

with an increased risk of mortality during extreme heat events? A secondary questions is: Which 

temperature measures are the best predictors of this association, if any? 

The data used for exploring the effect of MUHI on mortality were images from satellite remote thermal 

infrared sensing, weather station readings, a mortality registry for the city of Barcelona, and the Spanish 

census. The methods used were a case-only study design, distributed lag non-linear models to determine 

the lag in heat-associated mortality, logistic regression, and eigenvector filtering to partially adjust for 

spatial autocorrelation in the regression model. The tools used in the study were a PostGIS 2.0 spatially-

enabled PostgreSQL database, the R statistical language, and a selection of other Open Source tools 

(gdalwarp, MCElite).

This document first reviews what is known about heat-associated mortality and micro-urban heat 

islands, in the Literature Review section. The study design and methods are presented in the Research

Methodology section, which includes a short presentation of the study area, followed by the three main 

sections: Data Sets which describes the data used in the study, Data Processing which describes the way 

the data sets were handled and new data sets derived for the analysis, and the Data Analysis which 

focuses on the the fitting of regression models to the processed data. 

The final portion of the paper consists of the presentation of the Results, the Discussion of the results and 

the implications of the choices made, and the Conclusion. After the References, the Appendices include the 

full results set, including results not selected for the main text, and technical details about software and 

regression formulas used.
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 2 Literature Review

There is an extensive and growing literature addressing many different aspects of the relationship 

between heat and mortality. These include identifying heat thresholds that create important changes in 

mortality, and risk factors that increase mortality generally or in specific populations. 

 2.1 Heat Effects

Extreme heat stresses a living organism by increasing core body temperature, cholesterol levels, blood 

viscosity and circulation of blood to the skin (reducing circulation to the heart and lungs) (Curriero 2002). 

Increased sweating can lead to dehydration. Prolonged heat can cause heat cramps, heat syncope, heat 

exhaustion, heat stroke, hospitalization and death (Kovats and Hajat 2008; Luber and McGeehin 2008). 

Heat may kill so quickly that hospital admissions do not reflect the full scale of mortality (Kovats and 

Hajat 2008); some authors report that most victims are found dead in their residences (Bouchama et al. 

2007).

Heat effects are particularly detrimental to certain sub-populations: the elderly (Iñiguez 2010; O'Neil et  

al. 2009), the poor (Basu 2009; O'Neil et al. 2009), minorities (Basu 2009; Schwartz 2005b), the mentally ill 

(Hansen et al. 2008), outdoor workers (Kinney et al. 2008), the bedridden (Bouchama et al. 2007) and 

people who take certain types of medications that interfere with electrolytes and water balance (e.g., 

diuretics, anticholergic agents, and tranquilizers that impair sweating) (Johnson et al. 2009; Martin-Latry 

2007; Luber and McGeehin 2008; Hansen et al. 2008).

While the relationship between ethnicity and increased heat-related mortality may not be obvious 

initially, it has been borne out in several studies (Basu 2009; Kinney et al, 2008; O'Neill et al. 2003; 

Schwartz 2005b), despite the formidable complexity of the interactions between race/ethnicity, class, 

social status and health. These findings are not overly surprising, as minority status has been associated 

with disparities in health care provision and health outcomes in various areas, even when controlling for 

social and economic factors (Brulle and Pellow, 2006; Klonoff 2009), partly because minority populations 

tend to benefit less economically from the same level of education, and there are large disparities in 

wealth at the same income levels (Whaley 2003). Although health-care is free in Spain, there continue to 

be health-care disparities in immigrant and minority populations, as recent immigrants tend to work 

longer hours and have more inflexible work schedules which make it more difficult for them to receive  

preventive care and lead to more emergency visits. They also face language and cultural barriers (Rué et 

al. 2008). 

Multiple (not necessarily incompatible) explanations have been offered for these differences. Disparities 

in health and health outcomes between White populations and non-White populations have been 

extensively studied in the US epidemiological literature - close to half of all studies published in the 

American Journal of Epidemiology between 1921 and 1990 included measures of race/ethnicity (Whaley 

2003). Research on racial disparities in health outcomes indicate that some of these differences are likely 

due to cumulative factors related to life experiences and discrimination in the diagnosis and treatment of 

10



illnesses (Klonoff 2009), although the underlying mechanisms are not clear. The subjective experience of 

discrimination itself has been associated with poorer mental and physical health outcomes (Williams et  

al. 2008). To add a spatial dimension to this issue, areas where minority populations live tend to be 

subjected to disproportionate levels of environmental health impacts (Brulle and Pellow 2006). Clearly, 

measures of race/ethnicity are likely to be multiply confounded and difficult to examine.

Because heat and mortality do not have a clear “dose-response” relationship with identifiable 

thresholds, a wide-ranging set of topics are being explored to: 

1. identify dangerous heat and important exacerbating factors (humidity, heat duration, high 

nighttime temperatures, housing, etc.) (Basu 2009)

2. identify vulnerable populations (the elderly, mentally ill, chronically ill) (Bouchama et al. 2007; 

O'Neill 2009)

3. create heat health watch warning systems (HHWWS) to protect vulnerable individuals (Hajat et 

al. 2010; Matthies and Menne 2009), and 

4. intervene to better manage vulnerable groups and improve urban conditions, including 

improving housing and urban planning (Kinney et al. 2008; Kovats and Hajat 2008; Matthies and 

Menne 2009). 

 2.2 Identifying Dangerous Heat

There are several principal epidemiological approaches to identifying dangerous heat in a given location 

(Hajat et al. 2010; Kovat and Hajat 2008). These include two broad types of analysis: general additive 

models (GAM) (time-series) (Basu 2009; Basu and Samet 2002; Bayentin et al. 2010; Curriero 2002; Gosling 

et al. 2008; Iñiguez et al. 2010; Kovats and Hajat 2008; Metzger et al. 2010), and case-only studies 

(Armstrong 2003; Medina-Ramón et al. 2005; Schwartz 2005b). A GAM is a complex statistical model used 

to analyze time-series data. This analysis requires a number of sophisticated techniques to establish 

baseline values for variables and compensate for health effects that have seasonal periodicities (flu, 

allergies, etc.) or day-of-the-week periodicities (increased travel-related accidents on weekdays, alcohol-

related accidents on weekends, transportation-related air pollution, etc.). Case-only studies do not use 

data as a time-series, but divide cases by time-fixed and time-variable characteristics. A more detailed 

explanation of the case-only methodology can be found in the Case-Only Analysis portion of the Data

Analysis section.

Important variables analyzed include: 

• maximum, minimum and mean air temperatures and their relationship with mortality over 

time. Minimum temperatures conceptually are important because of their physiological effect 

of not allowing nocturnal respite from the effects of heat, 

• temperature-humidity measures (humidex, heat index or “apparent temperature” and the 

thermo-hygrometric index), as humidity has important impacts on the physiological effects of 

heat at a given temperature (Basu 2009; Metzger et al. 2010), these measures can be better 
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predictors of mortality than regular air temperatures,

• heat duration measures for minimum, maximum and synthetic (heat index, apparent 

temperature) temperatures. Moving averages of the current day and a previous time-period 

attempt to estimate the cumulative or lagged effects of heat (Kinney et al. 2008; Metzger et al. 

2010),

• spatial synoptic classification of weather conditions, also used in localized epidemiological 

studies. These attempt to categorize local weather patterns into a small number of groups (hot-

dry, hot-humid, etc.) for easier analysis (Metzger et al. 2010).

For practical purposes, humidity has been found to be a less useful measure for interventions such as 

developing HHWWS, as it is difficult to predict accurately (Hajat et al. 2010). 

Confounding factors such as physical activity, exposure to sunlight or air-conditioning can exacerbate or 

mitigate the effects of local heat conditions. There are several approaches to dealing with these factors, 

which fall into two main categories: exposure assessment for specific populations such as the ill and 

elderly (population-based), or assessing the stress inherent in being in a specific place at a specific time 

(place-based) (Basu and Samet, 2002). The latter would address issues of exposure to sunlight or shade. 

Air-conditioning is an extremely important factor that overlaps the two categories. It is place-based in 

that it only applies to people who spend the hot days in certain settings, but it also has a population-based 

aspect, in that it potentially can be linked to income, social class or even ethnicity. O'Neill, Zanobetti and 

Schwartz (2005) studied the prevalence of air-conditioning by ethnic groups in urban areas in the US. 

They found that mortality among Blacks was more prevalent than among Whites and that White 

households were twice as likely to have central air-conditioning. It concluded that part of the explanation 

for racial disparities in EHE-related mortality was due to unequal access to air-conditioning. Functioning 

air-conditioning decreased the probability of death in Chicago's 1995 heat wave by 70% (O'Neill et al.  

2009).

In addition, statistical techniques such as distributed lag models (Armstrong 2006; Schwartz 2000) are 

used to examine the relationships between exposure and associated mortality over time. Studies have 

shown mixed evidence of lag periods between peak heat and peak mortality, but the majority show short-

term effects over one to three days (Gosling et al. 2008). 

 2.2.1 Findings

A common epidemiological approach is to plot different types of regression curves for the temperature-

mortality relationship. These curves are normally U, V or J shaped, and can be used to identify a minimum 

mortality temperature (MMT), above and below which mortality increases.

There are several key findings. First, almost all attempts to identify dangerous heat have shown that 

threshold mortality levels, and MMT, vary from one city to the next, generally around average 

temperatures in a location, making a “universal” measure of dangerous heat more difficult to identify. 
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Hotter areas have higher MMTs than colder areas (Curriero et al. 2002; Iñiguez et al. 2010). Illustration 1 

shows heat-mortality curves for 11 US cities, grouped by their relative latitude (North or South). 

Unfortunately, most later research has shown these types of curves to be somewhat plastic, changing over 

time in the same locations.

Temperature-mortality curves for Barcelona show similar patterns (see Illustration 2), with a minimum 

mortality temperature of 22.4°C (95% CI: 20.7 – 24.2) maximum apparent temperature (Baccini et al.  

2008). 
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Other findings:

• Air conditioning has a strong impact on reducing or eliminating mortality (O'Neill et al. 2009), 

by up to 70%, as mentioned above.

• Mortality increases in a non-linear association with temperature and the duration of an EHE 

(Metzger et al. 2010; Saez et al. 2000). 

• Air pollution, especially ozone, may increase with heat and may have synergistic effects on 

mortality, although the evidence is unclear and varies depending on the type of pollution (Basu 

2009). According to Luber and McGeehin (2008, page 30), “A positive association has been 

found between temperatures > 32°C (> 90°F) and ground-level ozone production, and 

increasing evidence suggests that ozone and high temperature affect mortality synergistically.” 

Other studies have shown associations between heat and ozone, but no clear association with 

mortality (Schwartz 2005a, Smargiassi et al. 2009).

• There can be a lag period between peak heat and peak mortality. Bayentin et al. (2010) found 

evidence of a lag in ischemic heart disease specific mortality based on a study of year-round 

temperatures. However, Kinney et al. (2008) found “Heat effects on mortality usually have been 

observed to occur immediately (i.e., heat today affects deaths today) and/or with a 1-day lag, 

whereas cold effects may occur with a multiple-day lag”. Metzger et al. (2010) found that 

average, minimum and maximum temperatures and averages for the same or up to three 

previous days (lags 0-3) “performed equally well”. In a literature review, Gosling et al. (2008) 

found that most studies reported the main effects of heat with a 0- or 1-day lag, and only two 

reported lagged main effects for a period of longer than three days. 

• Food poisoning cases (e.g. salmonella) increase during EHEs (Matthies and Menne 2009), 

creating additional morbidity and mortality.

There are some additional caveats to these findings, however. Examining historical data from too far in 

the past is problematic, as overall mortality is decreasing (Metzger et al. 2010) and the use of air 

conditioning is increasing (Kinney et al. 2008). Heat effects may vary, and there is some evidence of an 

adaptive effect, from one hot year to another (Fouillet et al. 2008, Kinney et al. 2008) or between EHEs in 

the same season. Some suggest that the latter is due to a “harvesting” effect, leaving less vulnerable 

individuals later in the season (Metzger et al. 2010), while others attribute these to changes in behavior 

(restricted activity, acquisition of air-conditioning, or the implementation of HHWWS). Gosling et al. 

(2008) found evidence of mortality displacement in the literature, but the variable definitions of heat and 

displacement periods mean that the results are very mixed. 

 2.3 Vulnerability Mapping

One technique that is helpful for the development and operation of HHWWS is the creation of 

vulnerability maps, identifying vulnerable populations and other potential risk factors (Johnson, Wilson 

and Luber 2009; Kovats and Hajat, 2008; O'Neill et al. 2009). These maps can use a combination of 
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population-based or place-based (spatial) criteria. Vulnerable populations include those mentioned above: 

the elderly, the poor, racial/ethnic minorities, the mentally ill, people taking some types of medications, 

outdoor workers and the bedridden.

One spatial factor out of many that affects exposure to heat is the urban heat island (UHI) effect, which 

causes cities to have higher temperatures than their less urbanized surroundings, due to hard surfaces 

that absorb heat (steel, cement, asphalt), building density, wind and the the effect of the built 

environment on wind direction and speed, and lack of vegetation. Urban areas also show high variability 

in surface temperatures over short distances (Nichol et al. 2009), variations commonly referred to as 

“micro-urban heat islands” (MUHI). MUHI have been associated with increased mortality risks in previous 

publications (Johnson, Wilson and Luber, 2009; Kestens et al. 2011; Smargiassi et al. 2009). MUHI are 

important because they affect densely populated areas, thus putting large numbers of people at risk.
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 3 Research Methodology

 3.1 Overview

The question that the project sought to answer based on this map and supporting data was the 

following: Are micro-urban heat islands associated with an increased risk of mortality during extreme 

heat events? A secondary question was: Which temperature measures are the best predictors of this 

association, if any? The general method for answering these questions was to create and test a place-

based heat vulnerability map for the city of Barcelona.

 In order to identify MUHI and relate them to real effects on human mortality, several steps were 

required, as described below:

1. Identify daily average air temperatures over the study period. 

2. Create a composite, stable measure approximating fixed intra-urban variability (not absolute 

values) in land surface temperatures (LST) in the study area. LST tend to vary more over short 

distances than air temperatures (Nichol et al. 2009), and a stable composite measure would 

identify fixed “hot spots” of interest, or MUHI.

3. Test whether the MUHI identified were associated with relative increases in mortality during 

EHE. This testing involved:

1. Mapping georeferenced MUHI in the study area.
2. Locating (geocoding) the addresses of deaths in the study period.
3. Identifying whether the deceased lived within a defined MUHI.
4. Identifying time lag in heat-related mortality in the data set.
5. Identifying and adjusting for confounding factors (to the extent possible).
6. Identifying and adjusting for spatial autocorrelation.

 3.2 Study Area

The area examined in the study was the urban area of Barcelona, Spain. Barcelona is the capital of 

Catalonia, an autonomous region in the northeast of Spain, shown in Illustration 3, below. The study area 

itself was defined by the municipal boundaries of the city. The map shows that the city covers a coastal 

area, part of a mountain, and includes both dense urban and wooded areas.

Illustration 3: Barcelona, Spain, city limits. Census data, 2001. [overleaf]
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 3.3 Data Sets

 3.3.1 Overview

To carry out this analysis, information was gathered about global air temperatures, the distribution of 

persistent MUHI in the study area and the dates and locations of all deaths. All data was kept and, to a 

large extent processed, in a PostGIS database (the PostgreSQL relational database management system, 

with spatial extensions installed) and covered the period from 2000-2003, and the months of April-

September (inclusive), as these are the months in which EHE occur in the study area (Baccini et al. 2011; 

Baccini et al. 2008; Iñiguez et al. 2009; Saez et al. 2000). 

Most data sets used were available for the years 2000-2008, but the study period was reduced to the 

years 2000-2003, for reasons that will be explained in detail below. The standard datum and coordinate 

system for the study were the World Geodetic System (WGS84) datum and the Universal Transverse 

Mercator geographical coordinate system, zone 31° North (UTM 31N). The EPSG code for the spatial 

coordinate system used is 32631.

The following data were obtained:

• A registry of all deaths in Barcelona by date and address, between 2000 and 2009.

• Temperature data from multiple weather stations in and around Barcelona, from 1996 to 2008.

• Population counts by census tract for the year 2001.

• Two sets of satellite thermal infrared (TIR) images of the study area between the years 2000 and 

2009, one from Landsat 5 and another from Landsat 7.

The specifics of each data set are described below.

 3.3.2 Mortality data

Mortality data was collected from mortuary registries, and available by address of residence and 

address of death. It also included the sex, age (an integer, not date of birth), and day of death of the 

deceased. Cause of death was unavailable because the data source was not  health-related. In any case, 

health data that provided more information would need to be aggregated into areal counts to address 

data privacy concerns.

In the case that the deceased died more than one day before being found, it is unclear whether the date 

of death registered was the date the body was collected by the authorities or the estimated date of death 

based on forensic investigation, although the latter would be more appropriate.

The use of all-cause deaths (with the exception of accidents) is common in the study of heat-related 

mortality, because there is currently no systematic definition of heat-related mortality (Basu 2009). This 

study used only deaths at the address of residence, so traffic and other accidents outside the home were 

largely excluded.
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Some advantages and limitations of the mortality data set are described below:

Advantages

1. The dataset included all deaths in the city of Barcelona during the study period.
2. All deaths were identified by residential address and address of death, a level of detail 

unavailable in other types of mortality data.

Limitations

1. Cause of death was not available.
2. Other variables were limited (age and sex only).
3. No information was available on health status (chronic illness, medications, hospital admissions, 

etc.).

Appropriateness

1. Cause of death (other than to exclude accidents) is often not used in general heat-related 
mortality studies.

2. Lack of other variables can simplify analytical methods (see Data Analysis, below).
3. The ability to match residential and death addresses made it possible to pinpoint exposure on at 

least part of the day of death. 

 3.3.3 Weather data

The weather data set included daily air temperatures (minimum, maximum and mean temperatures), 

atmospheric pressure and relative humidity from weather stations in and around Barcelona. The data set 

also included wind speed, wind direction, precipitation and other meteorological variables which were 

not be used in this study, as the complexity of modeling these interactions were beyond the scope of this 

project. The positions of the weather stations were geolocated (Datum: ED50, GCS: UTM 31N). These 

coordinates were converted to the standard coordinates for the study (Datum: WGS84, GCS: UTM 31N; 

EPSG:32631).

 3.3.4 Census Data

Census data were used to calculate population density per square kilometer as a reference value, based 

on census data collected in the year 2001. Population density per square meter could also have been used, 

but values by square kilometer are easier to interpret intuitively. No information about air-conditioning 

(AC) in the home was collected in the 2001 census. There was a limited survey of AC use done in 2008,  

and questions about AC were eventually included in the 2011 census, which was not available for this 

study.

 3.3.5 Thermal infrared Images

TIR images (band 6: 10.4-12.5 µm) taken by the Landsat 7 instrument (60 meter resolution, resampled 

to 30m resolution) were used for the study. All images were screened to select only those images with 
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less than 10% cloud cover and were inspected visually by the author to insure that clouds did not obscure 

any of the study area. 

An alternative set of images from Landsat 5 (120 meter resolution) were collected, but not used. The 

resolution of Landsat 7 is significantly higher, although its temporal coverage was limited by the failure of 

its scan line corrector in May of 2003. After assessment (see Thermal Infrared Images  in the Data

Processing section), the Landsat 7 images were chosen. 

 3.3.6 Data Selection

 3.3.6.1 Data Sets

The final data sets used were the following:

• Mortality data for 2000-2003, April-September (inclusive)

• Meteorological data for 2000-2003, April-September (inclusive)

• Landsat 7 images from the years 2000-2002 (nine total, listed in Table 3)

• Census data for the year 2001 (to calculate population density)

 3.3.6.2 Selection Criteria

The decision was made to limit the study period to 2000-2003, despite having data for a larger period of  

time, in order to adjust the study period to the availability of the best quality data. The best TIR images 

publicly available were from Landsat 7, which were not available after 2003 due to equipment failure. Not 

only was the resolution of the Landsat 7 instrument better than Landsat 5, but the density of images over 

time (nine in three years) was much better than for Landsat 5. 

As for meteorological data, apparent temperatures could not be calculated after 2003 from the data set 

used, due to a change in the availability of meteorological data after that year. Also, population density 

measures, a key parameter in the regression model, were calculated for the year 2001, based on the most 

recent census, and change significantly over the next ten years. 

Furthermore, the use of air-conditioning (and associated confounding of results) was less likely to take 

place earlier in time, especially before the widespread and widely publicized mortality caused by the heat 

waves of 2003. It is has been suggested that AC and other types of interventions have reduced mortality 

in later heat waves (Fouillet et al. 2008).

There is a final issue of the computational resources needed to process the data to adjust for spatial 

autocorrelation (see Controlling for Spatial Autocorrelation). The eigenvector filtering approach used is a 

brute-force technique that involves selecting key eigenvectors out of a matrix developed from networks 

built on the coordinates of cases. Preliminary tests indicated that the memory and computing power 

required increased with the square of the number of cases included, although in practice the computing 

time needed was unpredictable and often much larger, possibly due to scale-driven changes in the 

matrices from which the eigenvectors were derived. 
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 3.4 Data Processing

 3.4.1 Overview

The fundamental dynamic was a process of enriching the mortality data by linking it with other types of 

data in a PostGIS database. By geocoding the addresses of the deceased, these locations could be mapped 

over other data layers containing meteorological information, processed TIR imagery, as well as census 

tracts and associated information (population density). All data were transformed to the WGS84 datum 

and the UTM 31N geographical coordinate system (EPSG: 32631).

For the most part, data was stored and processed in a PostGIS database. Most of the basic processing 

and data enrichment was done using the functionality provided by PostGIS version 2.0 (distance, spatial 

awareness, point-in-polygon calculations, etc.). Additional analytical functions were performed using the 

R statistical package, which can be compiled directly into the PostgreSQL executable as the PL/R 

language, although processed data were exported to R for regression analysis. 

Raster functionality has been integrated into the PostGIS project starting at version 2.0, which is 

currently a pre-release version. The raster functionality in PostGIS 2.0 was not complete at the time of the 

study, so some analyses were done outside the database with gdalwarp and a modified version of MCElite 

(software previously developed by the author). A schematic for the data processing workflow is shown in 

Illustration 4, at the end of this section.

 3.4.2 Mortality data

The mortality dataset consisted of one large Excel file per year (2000-2009) with uncoded deaths 

registered by date, including sex, age, residential address, address of death and no other information. 

There were 165,744 deaths registered for residents of Barcelona during this ten year period, 150,574 

with addresses. Deceased persons who were not in Barcelona at the time of their death, or who either had 

no known address or whose address was not registered in the database, were not included in the 

analytical data. This criterion may have excluded the deaths of homeless or undocumented persons, who 

would be particularly vulnerable to the effects of heat.

This curated data was transferred into two tables, one containing unique street addresses, and a second 

containing deaths identified with a unique id, including the date of death, other personal information, and 

two address id fields for the residential address and death address. The address id in both cases was an 

external key from the address table (see schematic, Illustration 4). Mean temperature data was linked to 

the id code for deaths by the date of death and relative radiance and census tract id (thus density) were 

linked to the address table using the ST_Intersects spatial function of PostGIS (see Appendix 2: Details of

Methods  for more details).
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The address table contained “clean” street addresses, with apartment numbers and other “vertical” 

information removed. While apartment height certainly would have an effect on the subjective experience 

of heat, the specific effect is unclear, and not necessarily uniform. Increased height could result in 

increased airflow, but also increased solar gain, and both issues depend on the presence, distance and 

orientation of nearby buildings. Also, position relative to the absolute height of a building, especially 

whether a subject lived on the top floor or not, and the age and level of insulation of the building, could 

have important effects on the heat inside the dwelling. Modeling at this level of detail was beyond the 

scope of the project. 

There were roughly 50,000 distinct street addresses in the data set, with multiple death events at the 
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Green: raw data; Purple: data processing; Blue: processed data; Yellow: spatial data; Orange: data links; 
Brown: final map.



same street address. This fact is important when developing different types of networks, as commented 

on below, as classical Gabriel and Relative Neighbor networks do not allow multiple nodes in the same 

position, so these networks were slightly modified to make them symmetric.

The addresses from the address table were cleaned and then geocoded using a Python script to extract 

addresses from the database, geocode them using the Google and Yahoo geocoding APIs, and write the 

results back to the database, along with information about the quality of the geocoded address match. 

These results were filtered for quality using a cross-checking method: by matching geocoded addresses  

returned by the respective APIs to parts of the submitted address (street number, street name, postal 

code, city, country). The Google-coded addresses were chosen for the study. The Google API used (Version 

3) takes an address as text, determines the closest match from its database, and returns that matched 

address with its WGS84 coordinates, along with an assessment of the quality of the match and the 

geocoding. Google provides the following codes for the match as the variable location_type, in decreasing 

order of quality:

1. Rooftop (exact coordinates of the address)

2. Range Interpolated (coordinates interpolated from street name and street number)

3. Geometric Center (the returned coordinates are for the centroid of the matched area, such as 

city, postal code, etc.)

4. Approximate (results with unknown precision)

The quality criteria defined for Google-geocoded addresses to be used in the study were the following:

1. All five elements of the original address (street number, street name, postal code, city, country) 

had to match the geocoded address returned by the Google API.

2. The geocoded address had to have a location_type of “Rooftop” or “Range Interpolated”.

Geocoding was an iterative process. Street names were included in the mortality records in an 

extremely abbreviated form, which in many cases needed to be modified so that Google's software could 

interpret them properly. There were also systematic errors in the addresses (“MARQUES” as both “MQES” 

and “MQUES”), and these errors needed to be corrected one at a time and then the failed addresses 

processed again. In addition, Google places a limit of 2,500 addresses that can be geocoded in a single 24-

hour period, requiring multiple geocoding sessions.

Of the 50,335 street addresses, 41,032 met the defined geocoding quality criteria (address matching on 

street number, street name, postal code, city and country), representing a total of 122,481 deaths. Of 

these deaths, 28,494 had the same address for both residence and death – that is, they were deaths in the 

home. These deaths were fairly evenly distributed during the study period (between 2,300 and 2,800 

deaths per year from 2000-2009), and the years 2000-2003 were not substantially different from the  

others. The study period (April to September) between 2000-2003 included 5,554 geocoded, at-home 

deaths. 

In-home deaths were used for several reasons. First, heat-related mortality tends to take place among 

the elderly and in the home (Bouchama et al. 2007). Secondly, it is difficult to determine if persons dying 

outside the home or in hospitals were exposed to recent heat in their area of residence (they may have 
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been hospitalized for a significant period of time or may have been staying at another address), whereas 

in-home deaths mean the deceased necessarily experienced local conditions at the time of death (with the 

exception of those found more than one day after death, but proper death certificates should include 

probable time of death). 

An additional issue is the cause of death. Because EHE can affect human physiology in multiple and not 

entirely understood ways (interactions with medications, food poisoning, etc.) (Bouchama et al. 2007; 

O'Neill et al. 2010), there are two principle types of study samples used with reference to cause of death: 

specific cause (cardiovascular or asthma, for example) or all-cause, excluding accidents. Currently, there 

is no systematic definition of heat-related mortality (Basu 2009), making overspecification of causes of 

death potentially counter-productive, resulting in missing some effects of EHE on mortality. Many 

researchers use all-cause mortality due to potential misclassification; very few deaths are classified as 

heat-related, and these definitions vary by location (Basu and Samet, 2002). This study used all-cause 

mortality, including accidents, as there was no way to exclude them. However, at-home deaths excluded 

traffic accidents, one of the largest causes of accidental mortality.
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 3.4.3 Weather data

Original weather data was obtained from 28 weather stations in Catalonia, Spain, five of which were 

within the metropolitan limits of Barcelona. These data included daily temperature measures, and some 

other measures, for the periods in which the weather stations were in operation. Table 1 provides 

information about each of the weather stations from which data was collected, while Illustration 5 shows 

their location in the city, along with geocoded deaths during the warm season (April 1 – September 30, 

2000-2003). 

Table 1: Weather Stations in Barcelona

Station Codes Operational Temperature Humidity

Barcelona 4N / 27 1994-2002 Yes Yes

Observatori Fabra D5 / 3 1996-2008 Yes Yes

Raval X4 / 21 2006-2008 Yes No

Zona Universitària X8 / 22 2008 Yes No

Zoo X2 / 20 2006-2008 Yes No

Of these six weather stations, only two (highlighted in yellow) collected humidity data and were 

operational during the study period (the Observatori Fabra and Barcelona weather stations), and only the 

former for the entire study period. Both stations collected information about relative humidity, needed 

for the calculation of apparent temperature. The Observatori Fabra is located above most of the populated 

areas of Barcelona, partially up the Collserola mountain in a wooded area. The Barcelona station was 

located in the city itself, near the Arc de Triomf. Between the two, they cover a range of conditions in the 

city, as well as a vertical distance of 403.7 meters – the Barcelona weather station is 7.5 meters above sea 

level and the Observatori Fabra station is located 411.2 meters above sea level. Illustration 5 shows the 

weather stations with respect to the cases in the study. Temperatures were recorded as the minimum, 

maximum and mean for each day (there were no hourly measures).

Illustration 5: Barcelona weather stations and warm-season, at-home deaths, 2000-2003.
[overleaf]
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A database table was created with averaged daily temperature values (minimum, maximum, mean) for 

the study area during the period for which temperatures were recorded (1996-2008). These were  

averages of the temperatures taken from weather stations in Barcelona, a technique which was at least as 

accurate as temperature assessments used in many published epidemiological studies, which often use 

measures at the nearest airport to determine temperatures for the study area (Baccini et al. 2011; Baccini 

et al. 2008; Smargiassi 2009). The Barcelona airport is visible in the southwest corner of Illustration 5. 

These means were later used to calculate the percentiles of temperatures in the study area.

Apparent temperatures (AT) and their averages were also calculated, using the formula: 

AT=−2.653+0.994∗temperature+0.0153∗dewpoint2 (Baccini et al. 2008)

 3.4.4 Census data

The Spanish census, managed by the INE (Instituto Nacional de Estadistica), provides demographic 

information about the Spanish population, organized by census tracts. The most important information 

for this study were population density and the use of air conditioners. Population density was calculated 

based on population counts and the size of census tracts for the year 2001, based on local population 

registries. The population density of Barcelona changed from 14,850.26 to 15,912.42/km2  between 2001 

and 2008, although the population distribution did not change dramatically during this time period. A 

strict comparison is somewhat difficult, as the census areas are changed yearly, and sometimes twice in a 

single year. 

The official census did not incorporate questions about the use or availability of air-conditioning until 

the most recent version (being carried out this year), although there was a specific survey done in 2008 to 

determine the use of air-conditioning. The results of that survey showed that some 35% of households in 

Spain had air-conditioning in 2008. The average for Catalonia was 36.1%, slightly higher than the national 

average. The size of the survey meant that detailed information by census tract was not available. The 

responses were broken down by income categories as well, ranging from 22.3% of households with 

household incomes of less than 1,000 euros per month with air-conditioning, while for households with 

monthly incomes greater than 2,700 euros that percentage rose to 46.2%. 

 3.4.5 Thermal Infrared Images 

TIR images taken by the Landsat satellites can be converted to an estimated LST value (Smargiassi et al.  

2009). However, this study worked directly with the radiance values recorded by the Landsat 7 TIR 

images, not temperature estimates. The goal was to determine areas where radiance was consistently 

higher in comparison to the rest of the study area, not to determine specific temperature thresholds or 

mortality increments attributable to a specific (e.g. one degree) change in temperature. Smargiassi et al. 

(2009) used a similar technique to analyze mortality associated with MUHI in Montreal, by stratifying 

their temperature measures. The Data Analysis section contains more details. 

Standardized scores were generated for each pixel position in the study area based on Landsat 7 TIR 

images that fulfill the inclusion criteria (< 10% clouds), as follows:
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1. Radiance values (0-255) are provided for each pixel in each Landsat TIR image.

2. Mean and standard deviation (SD) values were calculated for pixel values in each image. 

3. Z-score values z= x −μ
σ were calculated for each pixel based on the population parameters 

(mean and SD) of each TIR image. The results were rasters of z-scores indicating the relative 

radiance (RRZ) over the study area for each Landsat TIR image used in the study.

4. Z-score rasters were averaged to produce a single raster with mean RRZ scores, to indicate the 

averaged RRZ for each pixel area. 

This value represented the RRZ of that location as compared to the rest of the study area, using z-scores 

from TIR image pixel values, averaged over multiple images for reliability. The z-scores served as a proxy 

for relative differences in LST across the study area at any given temperature or time. The estimated LST 

itself was not calculated, because, while LST based on TIR images are correlated with real temperatures, 

there are several factors that limit the precision of the estimate, and the temporal coverage of the TIR 

images was limited. The goal was not to produce numeric values for temperatures on specific days, but to 

identify areas that were relatively hotter than others within the city on most days. No analysis of land use 

or ground cover was done, although this might have helped screen industrial and forested areas out of the 

study data set, for example. This could have been useful for limiting the range of z-scores to examine, but 

it would have artificially limited the study area, as there are residences inside the Collserola park, and in 

other locations that are technically illegal. While this introduces some confusion, it also includes a wider 

range of radiance values than purely residential areas might.

Because the raster manipulation functionality in PostGIS was not yet feature complete, the  raster 

images had to be processed outside the database. A modified version of the MCElite library 

(http://pyqgis.org/contributed/mcelite.zip) was used for the calculations and the GeoTiff results were 

imported using the raster2pgsql.py program included with the PostGIS source code.

It is important to note that Barcelona underwent changes with the construction of the Diagonal Mar 

section of the city during the first decade of the 21st century, converting largely industrial areas to more 

mixed urban space (commercial, housing). Thus, averaging RRZ across the entire study period could miss 

important relationships in areas where the built environment underwent significant changes, and the 

available Landsat images were examined with this in mind.

Landsat 5 images (Table 2) were divided into two groups, four from the year 2003 and three from the 

year 2009. Landsat 7 images were only available for the years 2000-2002, but there were more of them 

available in this period (nine, from 2000-05-13 to 2002-09-24) (Table 3), and the resolution of the 

Landsat 7 instrument was much better. 
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Table 2: Landsat 5 thermal infrared images meeting study criteria

Date Quality

2003-07-10 Excellent

2003-07-26 Excellent

2003-08-02 Excellent

2003-08-11 Excellent

2009-07-01 Excellent

2009-08-11 Excellent

2009-08-18 Excellent

All images with less than 10% cloud cover and no clouds obscuring study area.

Table 3: Landsat 7 thermal infrared images meeting study criteria

Date Quality

2000-05-13 Good

2000-08-10 Excellent

2000-08-17 Excellent

2000-09-11 Excellent

2001-04-14 Excellent

2001-06-26 Excellent

2001-08-13 Excellent

2002-05-19 Good

2002-09-24 Good

All images with less than 10% cloud cover and no clouds obscuring study area.

The z-scores were calculated and averaged for the selected images, and the resulting raster file 

imported to the PostGIS database.  The values of the rasters at each address were extracted and added to 

the coordinate data for each death. These coordinates were later used by R to create spatial layers for 

analysis. 

 3.5 Data Analysis

 3.5.1 Overview

A descriptive analysis was done of the study variables. Then a more detailed evaluation of the data was 

done using a case-only study design, distributed lag non-linear models (DLNM) to estimate lags in 

mortality, logistic regression analysis and eigenvector filtering to partially compensate for spatial 

autocorrelation in the regression model.
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 3.5.2 Descriptive Analysis of Variables

A preliminary descriptive analysis of the study variables is shown in Table 4.

Table 4: Summary Statistics for Study Variables

Variable Minimum Median Mean Maximum Standard 

deviation

Age 0 84 81.8 108 11.869

Mean temperature 8.65 21.35 20.75 31.60 4.789

Apparent mean temperature 5.95 18.59 17.99 28.77 4.754

Minimum temperature 4.20 18.15 17.37 27.20 4.588

Apparent minimum temperature 1.52 15.41 14.63 24.39 4.546

Maximum temperatures 11.70 25.90 25.39 39.20 5.406

Apparent maximum temperature 8.99 23.12 22.60 36.34 5.391

Population density (km2) 76.63 37,000.00 38,720.00 136,200.00 22,407.800

The variable age was provided as an integer, so the minimum age of zero would correspond to infant 

mortality. The average and median ages of death, however, are elevated. This is not an unexpected result 

for at-home deaths (or deaths in the first world). For several of the variables (age and all the temperature 

measures), the mean values are lower than the median values, indicating that the distribution of these 

variables is skewed to the left. It is worth noting that, in all cases, the effect of humidity measures was to 

reduce the extremes of subjective temperatures rather than increase them. This is possibly due to the dry 

Mediterranean climate of the area, resulting in a low dew-point with respect to the current temperature. 

Barcelona is also one of the most densely populated cities in the world, with one census tract achieving 

a population density of 136,200 persons per square kilometer (the real values for this area are 2096 

persons living in an area of 15,389 square meters, in an oddly shaped tract in downtown Barcelona). The 

population density by census tract is shown in Illustration 6. The highest density areas are located around 

the city center, with the coastal and mountain areas having lower population densities.

Illustration 6: Population density in persons per square kilometer, by census tract. Census data  
2001. [overleaf]
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 3.5.3 Case-Only Analysis

A case-only analysis was used in this project. The case-only methodology is used to study risk factors 

that modify the effects of a given type of exposure. Case-only methods can be used to analyze a single, 

time-fixed modifier of a given time-variable exposure in a set of cases over time. In this study, the 

exposure variable was high air temperature (HAT+/-) based on a percentile threshold of historical 

temperature data, and the modifier variable was high relative radiance (HRR+/-) based on the averaged 

z-scores from the raster data. Cases were deaths registered in the mortality registry and the time units 

analyzed were days during the study period. 

Case-only designs were developed for use in environmental epidemiology, specifically genetic 

epidemiology, to address gene-environment interactions, but they have also been used to study heat- and 

pollution-associated mortality in time-series data (Armstrong 2003; Medina-Ramón et al. 2006; Schwartz 

2005b). 

In genetic epidemiology the genotype of the cases is time-fixed, while an exposure (radiation, pollution) 

is time-variant. One advantage of this type of study design in genetic epidemiology is that controls are not 

needed, as it is difficult to identify and genotype sufficient controls. The primary advantages of a case-

only design in studies of EHE is that the technique is much simpler than a standard time-series analysis 

and has greater power, as long as certain conditions are met. 

For an environmental case-only analysis, a dichotomous time-varying exposure that applies to all study 

subjects (in this study a dichotomous variable representing high or low air temperature) and a 

dichotomous modifier that is time-fixed but varies by subject (these can be individual factors, such as sex, 

or other fixed factors such as housing type – in this study it was a dichotomous variable representing high 

or low RRZ at the location where the case died) are analyzed by comparing the proportion of cases that 

are +/- for the time-fixed modifier (HRR) that die on days when the exposure variable is positive (HAT+) 

or negative (HAT-). 

The fundamental dynamic is the following: if a time-fixed factor makes an individual more susceptible to 

the effects of a time-varying exposure, then the proportion of cases with the fixed factor will be greater 

when exposed, as compared to periods without the exposure. If HRR has a detrimental effect on mortality 

on hot days (HAT+), then the proportion of cases with a positive modifier (HRR+) will be higher when a 

day is HAT+ than when a day is HAT-. 

A 2x2 table can be constructed to show the logic in this calculation (Table 5). 

Table 5: A 2x2 table of a case-only design with the exposure (High Air Temperature) in  
rows and the modifier (High Relative Radiance) in columns

Modifier Proportion Odds

HRR = 1 HRR = 0 HRR+ deaths

Exposure
HAT = 1 A B A/(A+B) A/(A+B) / B/(A+B)

HAT = 0 C D C/(C+D) C / (C+D) / D/(C+D)
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If the proportion A/(A+B) is greater than C/(C+D), then this indicates that HRR is more often seen 

among deaths with high air temperatures (HAT=1) than without high air temperatures (HAT=0). The 

Odds Ratio is the ratio of the exposed and unexposed odds, or 

A /(A+B )/B /(A+B )
C /(C +D)/D /(C +D )

= AD
CB

The null hypothesis is H0: AD / CB = 1.0. Under the alternative hypothesis, that HRR is a risk factor for 

death during EHE, the odds ratio would be greater than one. An odds ratio less than one would indicate 

that HRR had a protective effect on deaths during EHE. 

 The Odds Ratio can be modeled as a logistic regression (Schwartz 2005b). A logistic regression 

calculates the odds that the dependent variable is equal to one, using a dichotomous variable rather than 

event counts. 

The initial formula would be (Armstrong 2003):

log(E (Y t ))=β0+β1 HAT +β2 HRR +β3 HAT⋅HRR+β4 Tv +β5 S

Where Yt  represents the daily counts of deaths, HAT is a dichotomous variable indicating whether (1) or 

not (0) an averaged air temperature measure (minimum, maximum, mean) for a given day is above the 

90th percentile of observed temperatures during the study period (April-September, 2000-2003), HRR is a 

dichotomous variable based on the value of the averaged z-score raster at the position of each death, Tv is 

a vector of time-varying confounders and S represents any smoothing functions applied. HRR = 1 if the 

relative radiance score (mean z-score) is greater than or equal to zero, and HRR = 0 otherwise. 

Armstrong (2003) describes a series of equations showing how most of the secondary variables in the 

analysis cancel out. They will be reproduced here with reference to the equation presented above, where 

HAT is the exposure and HRR is the modifier. First, we assume that HRR = 0 and HAT = 0 in subpopulation 

i on day j (the terms ß1, ß2 and ß3 drop out):

k 0=E (∑ Y ij∣HRR i=0,HAT j=0)=∑ [exp(β0+β4 Tv +β5 S )]
then, the case when HRR = 0 and HAT = 1 (the terms ß2 and ß3 drop out):

k 1=E (∑ Y ij∣HRR i=0,HAT j=1)=∑ [exp(β0+β1+β4 Tv +β5 S )]
then, the case when HRR = 1 but HAT = 0 :

E (∑ Y ij∣HRR i=1,HAT j=0)=k 0 exp(β2)

and finally, when both HRR = 1 and HAT = 1:

E (∑ Y ij∣HRR i=1,HAT j=1)=k 1 exp(β2+β3)

These formulas are displayed graphically in a 2x2 table in Table 6:
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Table 6: A 2x2 table of a case-only design with exposure (High Air Temperature) in rows  
and modifier (High Relative Radiance) in columns, substituting formulas into cells

Modifier

HRR = 1 HRR = 0

Exposure
HAT = 1 k1exp(ß2 +ß3) k1

HAT = 0 k0exp(ß2) k0

The odds ratio (AD/CB) for the association between HAT and HRR in this example is then:

ORHRR∣HAT=ORHAT∣HRR=
k 0 k 1 exp(β2+β3)

k 0 k 1 exp(β2)
=exp(β3)

The terms for the main effect (ß1), the time-varying confounders (ß4) and other terms (ß0 and ß5) cancel 

out, leaving only the interaction term ß3. The logistic regression takes the form:

logit(HAT=1) = α + β3*HRR

This simplifies the analysis, but means that the technique cannot be used to estimate the effect of the 

exposure variable, in this case HAT, so case-only analysis is generally used as a complementary analytical 

method. The appropriateness of using this technique in the present study will be discussed below.

An important consideration in a case-only analysis is confounding. Most importantly, the exposure and 

the modifier variables need to be independent, although this confounding can be controlled for under 

certain circumstances (Gatto et al. 2004). The differential temporal characteristics of the variables (time-

fixed vs. time-variable) are usually strong indicators of independence.

In addition, there are two other interactions that can cause important confounding:

1. Interaction of the time-fixed modifier variable with time-variant variables other than exposure.

2. Interaction of the time-variant exposure variable with time-fixed variables other than the 

modifier of interest. 

 3.5.3.1 Special Confounding Issues

There are three specific types of confounding that could affect this type of study. In decreasing order of 

importance, they are: interactions between the exposure and the modifier (in this study these were air 

temperature and relative surface radiance at specific points in the city); interaction between the modifier 

and another time-variable parameter (in this study relative surface radiance and some other time-variant 

variable that would confound air temperature such as flu epidemics, air pollution, etc.); and interaction 

between the exposure and one or more of the time-fixed variables (in this case air temperatures and one 

or more of: age, sex, chronic disease, socio-economic status, etc). 

In the first case, it seems true that the radiance of an urban area would interact with air temperatures 

locally, but the relative radiance is taken as a differential from the mean values for the study area, and 

thus changing the mean air temperatures over the study area would not confound because of the scale 

differences – the daily mean temperature is calculated as a constant across the whole study area (spatial 
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dimension), while the HRR score varies across the study area. If the differences between relative radiance 

values from one area to another changed based on different air temperatures, this would be problematic. 

It would have been interesting to compare the patterns of differential radiance in daytime versus 

nighttime TIR images, but there were none available for the study area.

As for the second type of confounding, relative radiance could influence some time-variant variables 

such as cloud formation, which could affect mean temperatures, but again, the scale of the changes 

wouldn't allow changes in radiance to change average temperatures. In the opposite direction, weather or 

air temperature could certainly affect overall radiance, but not the differential between areas (unless 

there were an association between the radiance differential and absolute air temperature, as mentioned 

above). It is known that ozone production increases with heat (Schwartz 2005a), and ozone increases 

mortality, so this is a potential confounding factor in areas with higher LST.

With regard to the third type of confounding - interactions between the exposure variable and other 

time-fixed modifiers of interest – it seems unlikely that daily temperatures across the study area could 

either modify or be modified by the time-fixed variables such as population density, sex, age at death or 

other unidentified time-fixed factors.

 3.5.3.2 Spatial Issues

This study adds a spatial dimension to the concept of orthogonality in study variables. While the case-

only study design works because of the orthogonality of the variables across the time dimension, the 

spatial dimension adds some potential confounding, especially through spatial autocorrelation. 

One issue to note from Armstrong (2003) is that the time-fixed variable does not have to be strictly 

time-fixed, but must be “effectively time-invariant”, or change over time at a rate that is so much slower 

than the exposure variable that the modifier is fixed relative to the exposure. Armstrong (2003) cites 

examples such as age, chronic disease and housing type. Spatial scale mismatches of variables should 

provide a similar level of orthogonality and avoid spatial autocorrelation that may limit the power of the 

study. Spatial “invariability” is effectively impossible, but important differences in scale are possible.

 3.5.3.3 Summary

A summary of the key points involved in the use of a case-only study design:

Advantages

1. Can be used without controls or population denominators.
2. Statistical analysis is less complex than standard time-series methods.
3. Has greater power.
4. Cofactors cancel out under appropriate conditions.

Limitations

1. Exposure (time-variable) and modifier (time-fixed) must be independent, but it is possible to 
adjust for interaction.
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2. Cannot estimate effect of primary exposure variable (HAT).

Appropriateness

1. Heat effects in Barcelona have been extensively modeled in other studies, there is no need to 
repeat this work (Baccini et al. 2011; Baccini et al. 2008; Matthies and Menne 2006; Saez et al. 
2000).

2. Because the available, spatially located mortality data have only two cofactors, modeling 
interactions would be limited even using a more complex analytical methodology.

3. The cancellation of cofactors tends to limit the effect of confounding variables. 
 

The analytical method chosen is a good fit for the project, as it is well adapted to the data available (only 

cases, limited cofactors) and an estimate of the exposure effect is not needed.

A different regression was done for each temperature type (apparent and normal) and measure 

(minimum, maximum, mean), with the HAT variable set to one for days in which the value is above the 

90th percentile for the specific temperature measures available. HRR will be defined as one only when the 

z-score registered for the location of death is greater than zero. 

 3.5.4 Time-Lagged Mortality

It has been proposed, and demonstrated, that heat-related mortality has various distributed effects over 

time - lagged mortality, the “harvesting” effect (imminent deaths brought forward by heat stress) – and 

that the shape of these lags is neither linear nor constant along the range of exposures. 

Distributed lag non-linear models (DLNM) (Gasparrini and Armstrong 2010) were fitted to the data to 

identify the lagged effects of heat on mortality. Lags of up to thirty days were examined, but the analysis 

was focused on the first five days of lag.

Distributed lag models were proposed by Schwartz (2000) to address the delayed effect of atmospheric 

pollutants on subsequent mortality and further developed by Armstrong (2006) and Gasparrini et al. 

(2010). The advantage of distributed lag models is they can identify both the distribution of mortality 

over a period of time as well as along the scale of the exposure (temperature, for example), instead of just 

a single lag point or range for a single exposure. 

 3.5.5 Regression

Logistic regression in a general linear model (GLM) was used to explore the level of association between 

air temperatures, areas of high daytime infrared emissions, and mortality. All regression analysis was 

done using the R statistical package (version 2.13.1) after exporting the processed study data from the 

PostGIS database to a comma separated file format. 

As mentioned above, the dependent variable in a case-only regression model is the time-fixed factor 

(the risk factor). The basic generic template formula for the regression model is:

HRR ~ HAT (1)

where HRR, the dependent variable, is a dichotomous variable representing whether the death took 
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place in an area with a relative radiance (z-score) above a defined threshold, or not, and HAT is a 

dichotomous variable representing whether the death took place on a day in which the air temperature 

measure was above the HAT threshold, defined as a percentile of historic temperatures.

From this basic formula, there were a series of decisions to be made as the final model (or models) 

was/were built.

1. The threshold for HRR
2. The percentile threshold for HAT
3. The type of temperature to use for defining HAT: Normal or Apparent
4. The temperature measure to use for defining HAT: Minimum, Maximum or Mean
5. The best adjustment for time-lagged mortality 
6. Additional variables included in the formula as cofactors
7. Adjustment for spatial autocorrelation

A more detailed template for the regression formula is the following:

HRR_xx ~ HAT_ttype_yy_lzz + γ +fitted(spatial_lag_model) (2)

where HRR_xx is a dichotomous variable representing whether a death occurred in a high radiance 

(high z-score) area, with values of one being for deaths in areas above a defined z-score (xx) threshold 

and zero otherwise, HAT_ttype_yy_lzz is a dichotomous variable representing whether the death took 

place on a day in which the air temperature measure of a certain type (ttype) was above a certain 

percentile (yy) at a certain lag (zz), γ is an array of explanatory variables or cofactors, and 

spatial_lag_model is a model used to adjust for spatial autocorrelation.

The development of each part of the model will be discussed below, and the final model described.

 3.5.5.1 Akaike Information Criterion

The Akaike Information Criterion (AIC) is used to compare the fit of different regression models against 

a given set of data. The lower the AIC score, the better the fit of the model to that specific set of data. The 

corrected AIC (AICc) can be used in cases where the models have a different number of parameters, and 

so is a preferred method in a study like this, as the model adjusting for spatial lag is included in the 

regression model as a variable number of individual factors (eigenvectors, see Controlling for Spatial

Autocorrelation, below). AIC (and AICc)  scores cannot be used to compare models fitted to different data 

sets or using different dependent variables. 

When selecting among a set of models, the relative probability that model mi minimizes estimated 

information loss when compared to model mmin (which has the lowest AIC value of the set) is the 

following: exp((AICmin – AICi)/2). This calculation will be referred to in this paper as RelAIC - the relative 

probability that the model minimizes information loss. The AICc was used to guide model selection in this 

study whenever possible (Logan 2010).
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 3.5.5.2 HRR Threshold

A graphic of the averaged RRZ (z-score) for the study area, based on Landsat 7 images, is shown in 

Illustration 7. It is notable that the individual images (not shown) were remarkably stable, with only 

minor changes between them. Evidence of this similarity can be seen in the southern part of the image, 

where the outlines of streets and buildings are clearly visible in this composite, averaging values from 

nine separate images. 

Illustration 7: Psuedocolor representation of average radiance (z-score) from Landsat 7 thermal  
infrared images (Barcelona, 2000-2002)[overleaf]
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Three HRR  thresholds were considered for this study: z-scores of 0.0, 0.2 and 0.4. At first glance, these 

may appear to be low thresholds for a type of study designed to use extreme values to examine an 

association. However, there are several reasons for this choice.

First, the hottest areas of Barcelona tended not to be residential but industrial (warehouses and 

factories, whose flat roofs heat up quickly), so the majority of the population lived in lower HRR areas. See 

Illustration 8, showing deaths in the study period and areas with z-scores above zero in red. Second, even 

those HRR areas which were inhabited had less people. 

Illustration 8: At-home deaths April 1 – September 30, 2000-2003 (red). HRR0 areas in yellow.  
[overleaf]
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These two factors skew the distribution curve of RRZ scores across mortality to the left, and reduce case 

numbers for study when seeking extreme values, as seen in the histogram in  Illustration 9 and in Table 7. 

The red, blue and green lines on the histogram represent HRR scores of 0.0, 0.2 and 0.4, respectively. The 

respective percentages of deaths above these values are 40%, 23% and 10%. Ninety-nine percent of all 

cases were below the a z-score value of 1.0. Tables 8-10 show the absolute values and global percentages 

(in parentheses) of each cell in 2x2 tables for each threshold, based on HAT = 1 when mean temperature 

is above the 90th percentile of measured temperatures (tmean90).

It is also notable that the cooler areas are not heavily inhabited either, as demonstrated in Table 7, 

where the minimum values are z-scores below -2.3, but 90% of the population lives in areas with z-scores 

above -0.75. Many of the lowest radiance areas are wooded. 

Regression testing and AICc values could not be used to frame this decision because HRR is the 

dependent variable, and models with different independent variables (essentially different underlying 

datasets) cannot be compared using the AICc. While the choice of the HRR = 0.0 threshold could 

potentially limit the results of the study if the effect of MUHI on mortality only exists in the most extreme 
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Illustration 9: Histogram of Deaths by RRZ (Z-Score). Thresholds: 0.0 [red], 0.2  
[blue], 0.4 [green].



range of values, it also means that the results of the study are more generalizable, as the threshold chosen 

includes 40% of at-home deaths in the study period. 

Table 7: Percentage Distribution of Deaths by RRZ (Z-Score) 

% 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

HRR -2.38 -0.75 -0.5 -0.35 -0.22 -0.11 0 0.11 0.24 0.4 2.28

Table 8: 2x2 Table for HRR threshold of 0.4

HAT 1 HAT 0

 HRR 1 135 (2.43%) 425 (7.65%)

 HRR 0 1217 (21.91%) 3777 (68.01%)

 

Table 9: 2x2 Table for HRR Threshold of 0.2

HAT 1 HAT 0

 HRR 1 304 (5.47%) 970 (17.46%)

 HRR 0 1048 (18.87%) 3232 (58.19%)

Table 10: 2x2 Table for HRR Threshold of 0.0

HAT 1 HAT 0

 HRR 1 2533 (45.61%) 1669 (30.05%)

 HRR 0 801 (14.42%) 2533 (45.61%)

Thus, the updated reference regression formula, with the dependent variable as HRR0, is:

HRR_0 ~ HAT_ttype_yy_lzz +γ +fitted(spatial_lag_model) (3)

 3.5.5.3 HAT temperature types and measures

In selecting reference values for the HAT_ttypeyy_lzz portion of the regression formula, there are several 

different parameters involved. Here ttype stands in for the type and measure of temperature (apparent or 

real temperature; minimum, maximum or mean measures). The yy part of the variable name represents 

the percentile temperature threshold (99th, 95th and 90th percentiles), and the lzz portion represents the 

days of lag used (0, 1, 2, 3 or 5 day lags). 

Table 11 shows the number of cases above the various thresholds for each temperature type. These 

numbers are then divided again into HRR+ and HRR- cells, as seen above in the HRR Threshold section, 

and the counts can become small very quickly.
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Table 11: Absolute Case Numbers and Global Percentages by Temperature Measure and  
Percentile

Temperature Type 90th 95th 99th 

Mean (normal) 1352 (24%) 756 (14%) 306 (6%)

Mean (apparent) 1352 (24%) 766 (14%) 260 (5%)

Minimum (normal) 1362 (25%) 660 (12%) 219 (4%)

Minimum (apparent) 1264 (23%) 535 (10%) 189 (3%)

Maximum (normal) 1406 (25%) 727 (13%) 180 (3%)

Maximum (apparent 1629 (29%) 844 (15%) 210 (4%)

Multiple regressions were done to compare models based on the different temperature cutoff points. 

Selected results are shown in Table 12, and the entire table is in Appendix 1: Initial Regression Results. All 

temperature measures (mean, minimum and maximum) were regressed for both temperature types 

(normal and apparent) for the three percentage thresholds. The best model was for the 90th percentile of 

minimum apparent temperatures with two days of lag (see Modeling Time Lag, below), with an AIC score 

of 7470.69. This model is highlighted in yellow in Table 12. Correlations for both the selected model and 

minimum normal temperature were significant at the 0.05 level.

A rule of thumb for using AIC scores is that models within two points of the minimum have substantial 

support for their results, otherwise the lower value is significantly better (Logan 2010). This study 

established a threshold of two points or less of AIC difference from the minimum for model consideration, 

which roughly corresponds to a RelAIC of 0.36 or higher. The models in Table 12 below this threshold are 

greyed out, to make the results easier to visualize. There are more sophisticated methods of model 

selection, but they were not used in this study, as this method was considered sufficient. The OR (odds 

ratio) in the table is explained in the Case-Only Analysis section. Simply put, if the OR is greater than one, 

the odds of death in the portion of the exposed group with the risk factor (HRR) is greater than the odds 

of death in the exposed group without the risk factor. If the OR is equal to one, then there are no 

differences between the two groups. If the OR is less than one, the risk factor appears to have a protective 

effect on the population who have it.
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Table 12: Selected regression results for 90th percentile temperatures, before adjustment  
for spatial autocorrelation

Temperature Lag OR 95% CI P-value AICc RelAICc

Type Measure days odds ratio confidence

Mean Apparent 0 1.038 0.915-1.176 0.562 7474.634 0.14

Mean Normal 0 1.038 0.826-1.321 0.562 7474.634 0.14

Minimum Apparent 0 1.088 0.957-1.236 0.199 7473.322 0.27

Minimum Normal 0 1.103 0.974-1.25 0.122 7472.588 0.39

Maximum Apparent 0 1.020 0.906-1.148 0.739 7474.858 0.12

Maximum Normal 0 0.995 0.879-1.126 0.934 7474.963 0.11

Mean Apparent 1 1.087 0.959-1.231 0.192 7473.269 0.28

Mean Normal 1 1.087 0.792-1.273 0.192 7473.269 0.28

Minimum Apparent 1 1.133 0.998-1.285 0.052 7471.22 0.77

Minimum Normal 1 1.120 0.989-1.268 0.073 7471.758 0.59

Maximum Apparent 1 1.051 0.934-1.182 0.407 7474.281 0.17

Maximum Normal 1 1.029 0.91-1.163 0.652 7474.767 0.13

Mean Apparent 2 1.114 0.984-1.26 0.088 7472.071 0.5

Mean Normal 2 1.114 0.803-1.283 0.088 7472.071 0.5

Minimum Apparent 2 1.141 1.007-1.293 0.038 7470.69 1

Minimum Normal 2 1.140 1.006-1.29 0.039 7470.728 0.98

Maximum Apparent 2 1.068 0.949-1.202 0.274 7473.774 0.21

Maximum Normal 2 1.041 0.918-1.179 0.531 7474.578 0.14

Mean Apparent 3 1.094 0.965-1.238 0.159 7472.987 0.32

Mean Normal 3 1.094 0.965-1.238 0.159 7472.987 0.32

Minimum Apparent 3 1.132 0.998-1.283 0.054 7471.26 0.75

Minimum Normal 3 1.132 1.00-1.281 0.051 7471.157 0.79

Maximum Apparent 3 1.052 0.934-1.184 0.406 7474.279 0.17

Maximum Normal 3 1.025 0.905-1.161 0.693 7474.814 0.13

Best model highlighted in yellow. RelAICc threshold for consideration of other models is 0.36. Models with 
gray text are below RelAICc threshold. Significant results in bold. 

These results show that, before applying a correction for spatial autocorrelation, there is no one model 

that clearly stands out above the others, but rather a gradient centered around minimum apparent 

temperatures at two days of lag. There is a tendency toward positive correlations in all but one of the 

models (maximum normal temperature at zero days of lag), and a tendency for the more significant 

results to have lower AICc scores. The best models were significant at the 0.05 level.

In general, the worst performing models (with AICc differences above two) were those based on 

average maximum temperatures and higher percentiles (95th and 99th, not shown). In addition, these 

poorer models had unstable coefficients. The higher AICc values and lower p-values seen in the 90 th 

percentile models made them better suited for the study and more useful for drawing inferences about 
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the data. All p-values below 0.1 were found in the models for minimum temperatures (both real and 

apparent) above the 90th percentile, with the exception of 90th percentile mean temperatures at two days 

of lag.

The 90th percentile temperature threshold was selected, again in order to have sufficient numbers for 

statistical analysis, and because initial regression testing of a series of models showed this to be a more 

stable data set. At this point, the highlighted model was used as a reference, but only to the extent that it is 

representative of the set of models shown that had similar AICc scores. These models may not all respond 

similarly to adjustment for spatial autocorrelation.

Although the two-day lag had some indications in its favor based on AICc scores, the importance of time 

lags on heat-associated mortality mean that time lags needed to be studied further, using more 

sophisticated tools, before a decision is made. This analysis is extended in the Modeling Time Lag section, 

below.

The choice between apparent and normal temperatures is also one in which AIC scores are not clear 

indicators of a good model because the values are so similar. Apparent temperature has the advantage of 

an underlying physiological explanation, which is that relative humidity is an important factor in 

physiological stress as it makes temperature regulation through sweating less effective. As such, it 

potentially models actual heat stress better than a simple measure of air temperature. This measure was 

also used Baccini et al (2010; 2008) in their study of heat effects in 15 european cities (including 

Barcelona). 

The disadvantage of apparent temperature is not directly germane to this current work, which is that it 

is difficult to predict humidity. This limits the practical applications of applying any results to specific 

activities, such as for developing HHWWS. 

Based on the results of this phase of the decision process, the reference regression formula becomes:

HRR_0 ~ HAT_atmin_90_lzz +γ +fitted(spatial_lag_model) (4)

Table 13 shows the cut-points for HAT+ using the 90th percentile of temperatures, in centigrade degrees.

Table 13: Temperature cut-points for 90th percentile of values (1996-2008)

Temperature Type Mean-90 Min-90 Max-90

Normal 24.40 20.95 29.20

Apparent 21.64 18.33 25.86
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 3.5.6 Modeling Time Lag

It has been proposed for many years that heat-associated mortality shows non-linear effects over time, 

affecting mortality days after EHE, both through delayed mortality (Gosling et al. 2008; Bayentin et al. 

2010; Kinney et al. 2008; Metzger et al. 2010) and the “harvesting” effect of bringing forward imminent 

deaths, thus reducing subsequent mortality for an undetermined period (Gosling et al. 2008; Metzger et al. 

2010). Most studies showed lags of 0-3 days (Gosling et al. 2008).

The R module DLNM (Distributed Lag Non-linear Models) was used to profile the effects of heat across a 

range of temperatures and lag times, using the study data reorganized into a time series. Details of the 

method and the code used can be found in Appendix 2: Details of Methods , in the Modeling Time Lag 

section. The results indicated that peak mortality risk was roughly one to two days after exposure, but 

that mortality risk ratios were elevated for several days. 

Illustration 10 shows the predicted effects of one of the better performing models from Table 12 

(minimum normal temperature above 90th percentile - tmin90) over 10 days of lag.
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 In this image it is clear that peak risk is on the day of initial exposure, and the relative risk (RR) at the 

highest analyzed temperatures remains elevated for most of the 10-day lag period, but at lower 

temperatures this is not the case.

The plot also shows only a very rough form of the J-shape typical of mortality graphed by temperature, 

and seen in the Baccini et al. (2008) plot from Illustration 2. This may be because this data was only from 

the warm season, and because only temperature and daily deaths were used in the regression formula, so 

it is a much more simple model.

Although this type of three dimensional plot is very good for getting a general idea of how heat impacts 

mortality across a range of temperatures and lags, it is somewhat difficult to interpret this graphic in 

detail (such as where the 1.0 RR threshold is crossed along the risk surface).

A more useful graphic is a contour plot of the same model, with different hue intensities of the colors 

red and blue representing elevated and decreased risk, respectively, as seen in Illustration 11, a contour 
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Illustration 10: Minimum Temperature Effects Across 10-day Lag (3D Plot). Data  
2000-2003, April-September.

Axes: Relative risk (RR) of mortality - vertical; Temperature - horizontal; Days of lag - depth



plot for relative risk over a range of temperatures and five days of lag. The green line in the figure 

represents the cutoff point for the 90th percentile of minimum temperatures (tmin90=20.95), over five 

days of lag. In general terms, it can be seen that the lagged effects of heat extend over a greater period of 

time as the heat exposure increases. It is also apparent that the most intense risk above the tmin90 

threshold is at one day of lag. There is a peak at one day of lag, but it also shows that the entire period of 

highest risk extends from zero to two days of lag, which is consistent with a two-day lag showing the best  

fit for this data, as the temperatures regressed in this model are an average of the previous two-day 

period. 

Illustrations 13 through 18 show plots for atmean90, tmean90, atmin90, tmin90, atmax90 and tmax90, 

respectively, for the study period (2000-2003, April-September). There is substantial variation in the 

distribution of high and low risk areas, but they all show peak risk at one day of lag followed by a period 

of lower risk. The minimum temperatures both show more risk density across the lower part of the 

graph, while the two mean temperature plots show a more defined peak of mortality at one day of lag. 

This may be due to the fact that minimum temperatures take place in the very early morning, and thus 

mortality could be moved forward with reference to that day's minimum temperatures, as there are 

probably 20 hours remaining in a day after the minimum temperature is reached. 
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Minimum temperatures represent a measure that has been highlighted in earlier research (Baccini et al,  

2010; Baccini et al. 2008). The theoretical explanation for the impact of high minimum temperatures on 

health is that this temperature represents the level of physiological respite that an organism gets at night. 

With high minimum temperatures, it is difficult to recover from daytime heat stress (in the absence of air 

conditioning), and thus it represents an absolute threshold of stress on the population in a 24-hour 

period. Thus, the good performance of minimum temperatures measures has a sound theoretical basis for 

use in the reference model.

The apparent and normal maximum temperatures in Illustrations 17 and 18 show blue areas around 

the threshold line, indicating a period of decreased mortality risk around two days of lag. One explanation 

for this decrease in risk would be the harvesting effect, in which the death of extremely vulnerable 

individuals would be brought forward 1-3 days (in this case), leading to decreased mortality in the period 

immediately following the highest mortality impact of the EHE.
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Illustration 12: Minimum Temperature Effects Across 5-day Lag (Contour Plot).  
Data 2000-2003, April-September, tmin90=20.94, RR=relative risk
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Illustration 13: Apparent Mean Temperature  
Effects Across 5-day lag. Data 2000-2003, April-
September.

Illustration 14: Mean Temperature Effects  
Across 5-day lag. Data 2000-2003, April-
September.

Illustration 15: Apparent Minimum 
Temperature Effects Across 5-day lag. Data  
2000-2003, April-September.

Illustration 16: Minimum Temperature Effects  
Across 5-day lag. Data 2000-2003, April-
September.



These results are consistent with the highest mortality risk being between 0-2 days of lag. The lag 

adjustment technique used in this study was fairly simple, using measures based on the average 

temperatures of the N previous days. This avoids the complexity of some more sophisticated techniques 

and still allows for good adjustment of models. Multiple lag measures were not included in a single model 

to avoid multicollinearity in the regressions. 

Thus, the choice of a model with two days of lag has the most support and can be added as the lag value 

in the reference regression formula:

HRR_0 ~ HAT_atmin_90_l2 +γ +fitted(spatial_lag_model) (5)

 3.5.7 Cofactor Selection

Some regression testing was done to select significant factors, but several factors were included in the 

model due to their real-world relevance. Population density was significant in all of the models tested, as 

expected, and is an important factor because it can partially represent other data that were not included 

in this study. Social status can be loosely associated with population density, as crowded conditions are 

likely to be seen with lower socio-economic levels. Population density can also affect solar gain. High 

population density means high-rise buildings and limited green space. High-rise buildings can provide 

shade, but also are made of materials that absorb solar heat, and do so when lower buildings may be 

protected from direct sunlight. 

However, sex and age were not significant in many of the models tested, or lost their significance after 

adjusting for spatial autocorrelation. Nevertheless, these factors were included in all models because of 

the important real-world relevance of age – most studies show the highest heat-related mortality in older 

age groups (Baccini et al. 2008; Medina Ramon et al. 2006; O'Neill et al. 2009) - and some studies have 
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Illustration 17: Apparent Maximum 
Temperature Effects Across 5-day lag. Data  
2000-2003, April-September.

Illustration 18: Maximum Temperature Effects  
Across 5-day lag. Data 2000-2003, April-
September.



found differences by gender (Basu 2009) on the impact of heat on health and mortality. 

Adding cofactors produces the reference formula:

HRR_0 ~ HAT_atmin_90_l2 +age +sex +pdens_km +fitted(spatial_lag_model) (6)

 3.5.8 Controlling for Spatial Autocorrelation

Once the basic regression model in (6) was defined, there remained one important element to take into 

account, which is the effect of spatial autocorrelation. The dependent variable (HRR) and one of the 

independent variables included in this model (population density) are spatially defined, and others may 

be spatially autocorrelated (age). There are likely to be important confounding effects that are spatially 

distributed, such as the effect of increased mortality in areas that are more marginalized or exposed to 

environmental stressors. 

All variables used in the regression models were analyzed for spatial autocorrelation using a calculation 

of the Moran's I (MI) statistic based on W-weighting of different types of networks (see Network Selection

and Weighting). The selected results for a distance network with a threshold of 750 meters are shown in 

Table 14. The 750 meter threshold was chosen for its real-world relevance and ease of calculation. The 

complete table can be found in Appendix 3: Moran's I Values.

Table 14: Moran's I values for selected regression model variables

Network Distance Wt Variable MI P-Value

Distance 750 W Tmin -0.002 0.892

Distance 750 W Tmax -0.002 0.907

Distance 750 W Tmean -0.001 0.647

Distance 750 W Age 0.023 7.88E-050

Distance 750 W Sex 0.010 1.22E-010

The Moran's I (MI) statistic is a measure of spatial autocorrelation derived from values of a single 

variable by comparing values of the variable at one location (either point or areal) to values of the same 

variable in a neighboring location – autocorrelation, or correlation with itself. The property of being a 

neighbor can be defined in a number of ways, often by setting a distance threshold and identifying all 

locations within a radius equal to that distance as neighbors. Consistent with Tobler's Law (nearer 

locations are more similar than less near locations), weights are applied to the correlations with 

neighboring areas based on their distance. Using a binary coding scheme, neighbors would be assigned a 

weight of 1 and non-neighbors a weight of 0. There are many different types of networks and weighting 

schemes that can be applied to them (see the Network Selection and Weighting section).

Moran's I is similar to a Pearson's correlation coefficient (PCC) in that it produces a statistical measure 

of correlation for the factor of interest. It is different in that a PCC compares two independent variables, 

while the MI provides a measure of spatial-autocorrelation of a single variable. A positive MI indicates 

that the values in the locations examined are more clustered than would be expected in a random 
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distribution, and a negative MI indicates that the values in those locations are more dispersed than would 

be expected in a random distribution. Because p-values can be calculated for MI, the level of certainty to 

which a spatial distribution departs from spatial randomness can be quantified and treated as any other 

one- or two-tailed test (Paradis 2006; Tiefelsdorf, Griffith and Boots 1999).

The variables that were significantly spatially autocorrelated were age and sex. The spatial clustering of 

age seems reasonable - neighborhoods can develop different demographic profiles as they evolve over 

time. The spatial autocorrelation of sex, though, while not high, is not as easy to explain. One cause could 

be confounding, as women tend to live longer than men. 

When age is regressed against sex, there is a strong correlation (6.302; p-value < 0.0001), indicating 

that women in the dataset die with an average age that is 6.3 years greater than that of men. The full set of 

correlations between variables can be found in Appendix 4: Variable Correlations.

Overall spatial autocorrelation was controlled for in the regression model using the Moran eigenvector 

GLM filtering (ME) function (Dray, Legendre and Peres-Neto 2005). This software uses brute force 

eigenvector selection to eliminate part of the spatial autocorrelation in a general linear model, in this case 

using a logistic (logit) link. Logistic regression is used to model relationships in which the outcome 

(dependent) variable is dichotomous. 

The ME function adjusts for spatial autocorrelation by identifying the degree to which connected nodes 

(i.e., the elements in a spatial weighting matrix) are related to each other, and producing additional 

attributes for the subsequent regression model, which uses those spatial interrelationships to 

compensate for bias in the model. The downside of this technique is that the brute-force method is 

resource intensive (several hours or days are required for a single spatial adjustment), and it is difficult to 

determine the time needed to complete an adjustment. In general, the time needed increases as the 

square of the number of nodes, but there is a great deal of variability in real world calculations. Multiple 

models needed to be tested, and it was clear that determining the best model to use was extremely 

important before committing extensive resources to the final analysis. The arguments to the ME function 

and the parameters used for the creation and weighting of network objects can be found in Appendix 2:

Details of Methods , Network Selection and Weighting.

 3.5.9 Addressing Confounding Variables

Specific factors which can be identified as important mortality confounders or cofactors are: the use of 

air conditioning (O'Neill et al. 2005), air pollution (Medina-Ramón et al. 2006), ethnicity (O'Neill et al.  

2009) and population density (Johnson et al. 2009). 

 3.5.9.1 Air-conditioning

Air-conditioning, as mentioned above, has an enormous effect on heat-related mortality rates. A 2008 

energy-usage study by the Spanish Statistics Institute (Instituto Nacional de Estadistica), which conducts 

the census, reported that AC ownership in Catalonia was 36.1% in 2008, slightly above the national 

average of 35.5%. (Instituto Nacional de Estadística, 2008). The Spanish figures were also broken out by 
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income level, with AC ownership ranging from 22.3 in households with income below 1,100 euros a 

month and reaching 46.2% in households with income greater than 2,700 euros a month. 

Information on household AC availability by census tract was not collected in the 2001 census, but has 

been added to the 2011 census questionnaire. A reasonable expectation is that AC acquisition increases 

over time, especially after the EHE of 2003. Unfortunately, it was  impossible to adjust the data analysis 

for this factor, and it certainly had some effect on the results.

 3.5.9.2 Air Pollution

Most types of air pollution are not highly correlated with temperature, with the exception of ozone. 

Ozone has a high positive correlation with temperatures, which can lead to confounding if higher ozone 

levels increase mortality significantly, and it has therefore been a subject of study in heat-associated 

deaths.

Medina-Ramón et al. (2006) adjusted models with and without ozone in their case-only study and found 

similar results in both. Schwartz (2005a) studied the relationship between ozone and mortality risk 

across 14 US cities, and found that temperature was unlikely to be a confounding factor. Smargiassi et al. 

(2009) found no evidence of association with ozone. Ozone and air pollution data were not available for 

this study. Nevertheless, collecting ozone data and controlling for daily ozone concentrations is a 

potential area of further investigation.

 3.5.9.3 Ethnicity

The Spanish census data does not include data on ethnicity, only country of birth and immigration 

status. This study could not control for ethnicity, since the data were not available, but confounding may 

have affected the robustness of the conclusions. There have been several studies of differential health 

outcomes in immigrant populations, but this study did not examine immigration status as the 

immigration status of the cases was unknown.

 3.5.9.4 Population Density

Population density has been shown to be a factor in heat-related mortality (Johnson et al. 2009). At the 

same time, Zhang and Wang (2008) found a high correlation between population density and the UHI 

effect, with an R2-value of 0.9438. In addition, high population densities in urban areas are almost always 

achieved with high-rise buildings, which necessarily means limited green space, extensive concrete 

surfaces, and the potential for extra heat gain on the vertical surfaces exposed to the sun. Whether tall 

buildings increase or decrease air movement depends on local weather conditions. High population 

density can also stand in for some measures of socioeconomic class, as smaller, more crowded dwellings 

are less likely to be homes of the wealthy. All of these factors make population density a variable that is 

likely to be correlated with several of the other study variables. 
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 3.5.10 Network Selection and Weighting

The type of spatial network used and weight coding scheme used are fundamental to the process of 

adjusting for spatial autocorrelation (Dray, Legendre and Peres-Neto 2005; Tiefelsdorf 1999). This study 

used distance networks (DNN) with a neighbor threshold of 750 meters and W-weighting for nodes. The 

selection process is detailed in Appendix 2: Details of Methods , in the Network Selection and Weighting 

section. 

 3.5.11 Final Model

The reference model developed in the Regression section used minimum apparent temperatures above 

the 90th percentile threshold at two days of lag, with adjustment for spatial autocorrelation being done 

with the ME function, using W-weighted DNN networks.  Because the effects of adjustment for spatial 

autocorrelation were unknown, the entire set of DNN models with a distance threshold of 750 meters 

were fitted, including lags from lag0 to lag3. Selected results are shown in Table 15, including all models 

with AICc scores within the range of consideration (up to two points of AIC above the minimum value, or 

a RelAIC of 0.36 or greater). Full results are shown in Appendix 5: Spatially-Adjusted Regression Results. 

The best performing model based on AICc scores used normal minimum temperatures at two days of 

lag, closely followed by the model based on minimum apparent temperatures at two days of lag. Both 

were significant at the 0.05 level, as was the model for minimum apparent temperature at one day of lag.

Table 15: Selected regression results, after adjustment for spatial autocorrelation

Temperature Lag Threshold OR 95% CI P-value AICc RelAIC

Type Measure days meters

Apparent Minimum 1 750 1.149 1.001-1.32 0.048 6517.011 0.899

Normal Minimum 1 750 1.131 0.987-1.296 0.076 6517.750 0.621

Apparent Mean 2 750 1.131 0.987-1.295 0.076 6517.765 0.616

Normal Mean 2 750 1.131 0.987-1.295 0.076 6517.765 0.616

Apparent Minimum 2 750 1.150 1.003-1.319 0.046 6516.910 0.945

Normal Minimum 2 750 1.151 1.005-1.319 0.043 6516.797 1.000

Apparent Minimum 3 750 1.143 0.996-1.312 0.057 6517.295 0.780

Normal Minimum 3 750 1.137 0.992-1.302 0.065 6517.488 0.708

90th percentile temperatures used. All eigenvector filtering used W weighting with alpha=0.05. Best model 
highlighted in yellow. The RelAICc threshold for consideration of other models is 0.36. Correlations 
significant at the 0.05 level bolded.

Both types of minimum scores produced results significant at the 0.05 level, as did the model for 

minimum apparent temperature at one day of lag. These results are consistent with the DLNM results 

shown in the Modeling Time Lag section, indicating that the highest mortality risk is between one and two 
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days of lag.

There are several characteristics of these results that are important for model selection. First, all 

coefficients were positive, and they tended to be higher the better the fit of the model (lower AICc score). 

Second, p-values were more significant with a better model fit as well. Third, all models within the range 

of consideration (RelAICc > 0.36) are significant or nearly significant (below p=0.10, with the highest 

being 0.076). What we see is a gradient centered around minimum temperatures and two days of lag, 

which is entirely consistent with the DLNM results as well. 

Based on these spatially-adjusted regression tests, the reference regression model can be finalized, as:

HRR_0 ~ HAT_tmin90_l2 +age +sex +pdens_km +fitted(spatial_lag_model) (7)

While average minimum temperature above the 90th percentile at two days of lag (tmin90_l2) is the 

best fitting model, it is representative of a set of models including minimum apparent temperature above 

the 90th percentile at two days of lag (atmin90_l2), minimum apparent temperature at one day of lag 

(atmin90_l1) and normal and apparent minimum temperatures at three days of lag (tmin90_l3 and 

atmin90_l3).

 3.5.12 Further Testing

Taking this best performing model identified in the Final Model section, a series of explorations were 

done to see how different networks (GAB and RNN) and different distance thresholds for DNN networks 

affect the strength of the association and the quality of the fit to the data. To this end, the following 

models were tested.

1. Distance Networks (DNN)
1. 1000m and 500m thresholds for DNN
2. The selected model (tmin90_l2) against 95th and 99th percentile temperature values
3. The selected model (tmin90_l2) against HRR02 and HRR04 areas

2. Other networks (using a 36% sample [2000 nodes])
1. Relative Neighbor Network (RNN)
2. Gabriel Network (GAB)
3. DNN thresholds for comparison (1000m, 750m, 500m)

 3.6 Weaknesses of the Study Design

There were several potential weaknesses in the study as designed. Three important confounding factors 

(income/socio-economic status, ozone air pollution and the use of air-conditioning) were not used due to 

the difficulty of obtaining them in the study period. 

Adjustment of temperature estimates based on the physical environment at each death, such as 

interpolation between weather stations based on distance and elevation, or including factors such as 

solar exposure or wind speed and direction, was not done due to the complexity of the modeling and the 

extensive data sets required for this type of analysis. The HRR and population density variables may 
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partially compensate for these factors.

More sociodemographic data, such as building socio-economic status (SES) indicators from census data 

could have helped adjust for the effects of SES on health, as well as compensate to some extent for the 

disparity in AC use by income level.

A very interesting study by Smargiassi et. al. (2007) showed the effectiveness of a method for estimating 

indoor air temperature based on known characteristics of the built environment and the area around the 

building. Either of these techniques (estimating indoor air temperatures or adjusting for the area around 

the building) may have helped in this study. However, the technique used by Smargiassi requires 

extensive knowledge of the the age and construction type of each building, information which was not 

available for this study. Neither was there detailed data available on the type of public and private space 

around buildings, especially vegetation. To an important extent the amount of vegetation and its effect on 

heat is reflected in the infrared imagery as cooler areas. 
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 4 Results

As described in the previous section, a whole set of DNN models were studied at the 750 meter 

threshold, and the tmin90_l2 model showed a significant relationship with HRR0 after adjustment for 

spatial correlation, with results presented in Table 15 (full results in Appendix 5: Spatially-Adjusted

Regression Results). These results were consistent with the results of analyzing the dataset with 

distributed lag non-linear models (see Modeling Time Lag, above), and consistent with a 15% greater risk 

of death in HRR areas of the city of Barcelona during extreme heat events identified by high minimum 

daily temperatures. The findings are significant at the 0.05 level.

 4.1.1 Other Model Choices

Some limited sensitivity testing of the basic model was done by changing selected parameters and 

fitting a new model with the minimum apparent temperature values at two days of lag. The results are 

shown in Table 16.

Table 16: Selected results of sensitivity testing of the regression model

Z-Score HAT percentile Lag Coefficient OR 95% CI P-value AICc

0 99th 2 -0.132 0.877 0.647-1.183 0.392 6520.16

0 95th 2 0.124 1.132 0.875-1.228 0.190 6519.18

0.2 90th 2 0.069 1.072 0.918-1.249 0.379 5324.1

0.4 90th 2 0.045 1.046 0.845-1.288 0.677 3294.32

All models used DNN networks with a distance threshold of 750 meters. 

The models with HRR0 as a dependent variable and different HAT thresholds show worse AICc scores 

(roughly in the range of some of the other models in Appendix 5: Spatially-Adjusted Regression Results). 

While these results could be considered counter-intuitive (more extreme values would be expected to 

produce more pronounced results in a case-only study), the reduction in the sample size can lead to 

unstable coefficients and non-significant p-values. While the models with HRR=0.2 and HRR=0.4 as 

dependent variables have lower AICc scores, these are not comparable to the other models presented in 

this study because the underlying data sets are different. In any case, they are subject to the same 

problem as the first two models – the small cell size produced by selecting more extreme values can lead 

to unstable coefficients. 

Different weighting schemes were also tested with the key models, using the C and S coding schemes 

(Tiefelsdorf et al. 1999). More details about weighting are in the Network Weighting section of Appendix 2:

Details of Methods . Results are shown in Table 17.
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Table 17: Regression results by Weighting Scheme

Model Wt Coefficient OR 95% CI P-value AICc

atmin90_l2 C 0.147 1.158 1.009-1.328 0.035 6513.482

tmin90_l2 C 0.147 1.158 1.01-1.327 0.036 6513.555

atmin90_l2 S 0.146 1.157 1.007-1.326 0.037 6506.981

tmin90_l2 S 0.144 1.155 1.009-1.326 0.040 6507.108

The different weighting schemes do not appear to make large differences in the results, although both 

the S-coding scheme and the C-coding scheme produce lower p-values and AICc values, indicating a better 

fit to the data. The C-coding scheme clearly has a better fit than the W-coding scheme (more than three 

points of AICc), while the S-coding scheme is much better than the C-coding (more than six points lower). 

There also seems to be a gradient here as well, with the globally standardized values (which emphasize 

the number of connections) showing the most significance, the intermediate S-coding showing somewhat 

less significance, and the W-coding showing the least. Nevertheless, all results are significant, and very 

similar.

It seems intuitively important that outlier values not have a disproportionate influence on the results of 

the analysis, as Tiefelsdorf (1999) indicates is the case with W-weighting, but it does not seem to be an 

important differential factor in the results for this data set (at the 750 meter threshold). 
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 5 Discussion

Other studies have also examined mortality associated with MUHI, primarily using areal data, as most 

health data sets do not include specific addresses. The one study with the best resolution was done in 

Montreal, by Smargiassi, et al. (2009) using the geographical centroids of postal codes. Postal codes in 

Montreal cover an area roughly equivalent to one side of a city block, with approximately 50 residents 

each. Their study also used Landsat 7 images, in their case used to derive estimated LST directly, and 

these estimated temperatures were stratified into groups. The highest-LST group (above the 75th 

percentile) showed increased mortality risk. Due to cloud cover, they were only able to identify two 

adequate Landsat images from a 13 year period. 

Tomlinson et al (2011) have published a detailed method for including MUHI data in a health risk 

assessment, but the method was not tested against specific mortality data. 

This study is the first to use a mortality registry identifying deaths by address, and due to the relative 

lack of clouds in Barcelona, had nine high quality TIR images of the study area over a three-year period. It  

is also the first study of MUHI to use eigenvector filtering to partially compensate for spatial 

autocorrelation.

The results that were obtained are consistent with a real effect – that mortality increases in areas that 

appear hotter on infrared imagery during extreme heat events. Given all that is known about the effects of 

heat on health and mortality, it is only reasonable to assume that areas that become hotter during the day, 

as demonstrated by their radiance in the infrared range, would be associated with greater mortality.

The relative lack of humidity in Barcelona may have been an important factor in the findings. Dry air 

transmits heat less easily, potentially making radiant heat a more important factor in the subjective 

experience of cases than it might be in a more humid area, such as Montreal. The findings of this study 

may not be directly applicable to other areas with different atmospheric conditions.

There remains the possibility that the significant results identified could be confounded, especially by a 

combination of social class and air-conditioning use. The former could be associated with poorer health, 

older and less well maintained housing stock, and poorer neighborhood conditions (less trees, for 

example). This factor could also have a direct influence on the availability of air-conditioning. The net 

effect is that people living in these areas would be more exposed to the effects of heat, as compared to 

residents in higher-income areas, who would be better protected from the effects of heat by better 

insulated buildings, more green space, and air-conditioning.  
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 6 Conclusion

This study attempted to answer the question: Are micro-urban heat islands associated with an 

increased risk of mortality during extreme heat events? It also posed a sub-question: Which temperature 

measures are the best predictors of this association, if any?

Based on the results of the statistical analysis and the data used, the answer to the first question is yes. 

The null hypothesis that the odds ratio for the study data is equal to one can be rejected with significant 

confidence, as the 95% confidence intervals of the significant odds ratio do not overlap the value of one. 

These significant differences are robust across different network weighting schemes and a small range of 

distance thresholds.

In response to the second question, two-day moving averages of minimum temperatures above the 90 th 

percentile of normal temperatures showed the best fit to the data, based on AICc values. They were 

associated with a significant, 15% increase in the odds of mortality during extreme heat events in micro-

urban heat islands (MUHI) identified on satellite thermal infrared  (TIR) images. Both apparent and 

normal minimum temperatures performed similarly. The two-day averages show that lagged mortality 

measures are a better estimate of true heat-related mortality than a simple association between 

temperatures and mortality on the same day.

Furthermore, the sensitivity testing done of different temperatures and radiance thresholds indicates 

that the parameter choices made in the initial regression model were good ones, and that these results 

were robust across different distance thresholds and weighting schemes. The testing of samples across 

different network types was inconclusive, although it did indicate that GAB and RNN network results 

could provide an interesting perspective, if they could be completed in a timely manner. More testing 

might better profiled the behavior of the dataset. Unfortunately, the computationally intensive nature of 

the eigenvector filtering approach means that it was difficult to explore the data further, especially at 

lower distance thresholds and with other network types. An additional methodological observation is that 

the use of eigenvector filtering in large data sets (> 10,000 node networks) may not be possible with the 

types of computing hardware available today.

 6.1 Practical Implications

Extreme heat events are complex, difficult to identify clearly, and increase mortality in populations that 

are exposed to them directly. Furthermore, global climatic changes indicate that these events will appear 

with increasing frequency and intensity (Baccini et al. 2010; Gosling et al. 2008; Meehl and Tibaldi 2004; 

O'Neill et al. 2009). 

The results of this study have implications for interventions at two levels: urban planning and public 

health interventions to target vulnerable individuals. Urban planning interventions to create “cooler” 

neighborhoods (reflective rooftops and pavement, more trees and green space, development that takes 

advantage of wind patterns, etc.) can reduce the heat associated with MUHIs. 
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Public health interventions, which already exist to address heat, can add areas identified as having HRR 

to their vulnerability maps. Heat emergency response efforts can redirect extra resources to these areas. 

Workers on the ground can also help identify buildings that may be more vulnerable to heat because they 

are older, exposed to sunlight, poorly insulated, etc. Existing HHWWS may want to consider how 

minimum temperatures are weighted in their existing risk formulas, as this study indicates that they are 

the best measures. 

While Landsat 7 is no longer provides coverage of Barcelona, there are many other options for infrared 

imaging (aerial overflights, other satellite systems, etc.), and the cost of remote sensing would be easily 

justifiable in densely populated urban areas.

 6.2 Caveats

While these results are certainly indicative, there are a number of issues that could limit their practical 

applications. The most important would be a confounding effect by a variable such as socio-economic 

status, either linked directly to greater mortality in HRR areas, or indirectly by influencing the differential 

use of air conditioning by income level (which the INE survey has shown is the case in Spain). If this could 

explain a large portion of the association between HRR and increased mortality on hot days, the 

consequent policy implications are different.

Second, this association was identified in a period before and during an important series of extreme 

heat events in 2003. Both increased air-conditioning and public health initiatives have been implemented 

in the intervening time, and it is not clear that this mortality association would still be found today.

 6.3 Potential improvements and further study

There are a number of aspects of the study that could be improved, and further work in this area could 

provide more insight into the spatial dynamics of heat and mortality, at least in Barcelona. Of course, 

specific processes could be improved (such as geocoding) or new data sets could be sought (such as other 

TIR satellite or aerial images). 

The most important issue would be to address the potential confounding effect of socio-economic status 

(SES) and/or income by using them to adjust for confounding in the regression analysis. The use of air 

conditioning can't be adjusted for directly until the 2011 census results are available, but income levels 

could provide a rough gradient of potential use.

Geocoding errors could significantly reduce the ability to detect mortality clustering, and association 

with MUHI and demographic information. Since standard commercial sources are used (Google and 

Yahoo), there may be other alternatives that would provide better results, such as address databases 

maintained by the Ajuntament of Barcelona and the Generalitat of Catalonia. 

Another important improvement would be an increase in the sample size. Completing the geocoding of 

the remaining 9,000 addresses of the 50,000 “clean” addresses could help with this. A more useful 

proposition might be incorporating mortality data from Badalona and El Hospitalet, two cities on either 
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side of Barcelona, to the northeast and west, forming a single, contiguous urban area. These two cities 

have similar profiles to some of the HRR areas in the city of Barcelona: they are more industrial, have 

higher radiance values, and tend to have a lower socioeconomic profile (although this factor has not been 

shown to be the case in the data set used in this study, it is merely speculation at this point). On the other 

hand, a much larger set of cases could create problems with the eigenvector filtering technique.

In a very practical sense, it is also important to identify new sources of high-resolution thermal infrared 

images in the study area, now that Landsat 7 is unavailable, to follow up on the findings of this study and 

develop a more up-to-date vulnerability map for the area.
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Appendix 1: Initial Regression Results

Table 18: Regression results before adjustment for spatial autocorrelation

Temperature Percentile Lag Coefficient OR 95% CI P-value AICc RelAIC

type measure

Apparent Mean 99th 0 0.073 1.076 0.834-1.384 0.572 7474.661 0.138

Apparent Mean 99th 1 -0.005 0.995 0.773-1.277 0.970 7474.979 0.118

Apparent Mean 99th 2 0.015 1.015 0.79-1.3 0.904 7474.966 0.119

Apparent Mean 99th 3 0.021 1.022 0.783-1.328 0.874 7474.955 0.119

Apparent Mean 99th 5 0.028 1.028 0.765-1.375 0.853 7474.946 0.120

Apparent Mean 99th 10 0.089 1.093 0.779-1.525 0.604 7474.712 0.135

Apparent Minimum 99th 0 0.136 1.146 0.852-1.534 0.364 7474.160 0.177

Apparent Minimum 99th 1 0.021 1.021 0.768-1.352 0.885 7474.959 0.119

Apparent Minimum 99th 2 0.016 1.016 0.743-1.381 0.921 7474.970 0.118

Apparent Minimum 99th 3 -0.008 0.992 0.728-1.344 0.961 7474.978 0.118

Apparent Minimum 99th 5 -0.035 0.965 0.674-1.37 0.844 7474.942 0.120

Apparent Minimum 99th 10 0.084 1.088 0.743-1.584 0.661 7474.789 0.130

Apparent Maximum 99th 0 -0.014 0.986 0.742-1.305 0.924 7474.971 0.118

Apparent Maximum 99th 1 0.025 1.026 0.787-1.332 0.849 7474.944 0.120

Apparent Maximum 99th 2 -0.022 0.978 0.743-1.282 0.875 7474.955 0.119

Apparent Maximum 99th 3 -0.030 0.970 0.728-1.287 0.836 7474.937 0.120

Apparent Maximum 99th 5 0.040 1.041 0.744-1.447 0.814 7474.925 0.121

Apparent Maximum 99th 10 0.068 1.070 0.781-1.46 0.670 7474.800 0.129

Apparent Mean 95th 0 0.024 1.024 0.876-1.196 0.764 7474.890 0.123

Apparent Mean 95th 1 0.026 1.027 0.88-1.197 0.739 7474.869 0.124

Apparent Mean 95th 2 0.029 1.029 0.882-1.2 0.713 7474.845 0.126

Apparent Mean 95th 3 0.024 1.024 0.879-1.192 0.761 7474.888 0.123

Apparent Mean 95th 5 0.023 1.023 0.872-1.198 0.780 7474.903 0.122

Apparent Mean 95th 10 -0.047 0.954 0.806-1.128 0.585 7474.681 0.137

Apparent Minimum 95th 0 0.092 1.097 0.914-1.314 0.319 7473.992 0.193

Apparent Minimum 95th 1 0.059 1.061 0.882-1.275 0.527 7474.582 0.144

Apparent Minimum 95th 2 0.065 1.067 0.889-1.28 0.483 7474.490 0.150

Apparent Minimum 95th 3 0.010 1.010 0.838-1.214 0.918 7474.970 0.118

Apparent Minimum 95th 5 -0.015 0.985 0.798-1.214 0.890 7474.961 0.119

Apparent Minimum 95th 10 0.005 1.005 0.799-1.26 0.968 7474.979 0.118

Apparent Maximum 95th 0 -0.060 0.942 0.81-1.094 0.435 7474.369 0.160

Apparent Maximum 95th 1 -0.028 0.972 0.833-1.133 0.718 7474.850 0.126

Apparent Maximum 95th 2 -0.019 0.981 0.844-1.139 0.802 7474.917 0.121
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Temperature Percentile Lag Coefficient OR 95% CI P-value AICc RelAIC

type measure

Apparent Maximum 95th 3 -0.035 0.965 0.831-1.119 0.640 7474.762 0.131

Apparent Maximum 95th 5 -0.013 0.987 0.848-1.147 0.863 7474.950 0.119

Apparent Maximum 95th 10 -0.041 0.960 0.818-1.124 0.611 7474.721 0.134

Apparent Mean 90th 0 0.037 1.038 0.915-1.176 0.562 7474.644 0.139

Apparent Mean 90th 1 0.083 1.087 0.959-1.231 0.192 7473.280 0.275

Apparent Mean 90th 2 0.108 1.114 0.984-1.26 0.088 7472.082 0.501

Apparent Mean 90th 3 0.090 1.094 0.965-1.238 0.159 7472.998 0.317

Apparent Mean 90th 5 0.049 1.051 0.927-1.191 0.439 7474.383 0.159

Apparent Mean 90th 10 0.011 1.011 0.886-1.153 0.866 7474.952 0.119

Apparent Minimum 90th 0 0.084 1.088 0.957-1.236 0.199 7473.332 0.268

Apparent Minimum 90th 1 0.125 1.133 0.998-1.285 0.052 7471.231 0.767

Apparent Minimum 90th 2 0.132 1.141 1.007-1.293 0.038 7470.701 1.000

Apparent Minimum 90th 3 0.124 1.132 0.998-1.283 0.054 7471.271 0.752

Apparent Minimum 90th 5 0.131 1.140 1.004-1.294 0.043 7470.888 0.911

Apparent Minimum 90th 10 0.030 1.031 0.903-1.176 0.654 7474.780 0.130

Apparent Maximum 90th 0 0.020 1.020 0.906-1.148 0.739 7474.869 0.124

Apparent Maximum 90th 1 0.050 1.051 0.934-1.182 0.407 7474.292 0.166

Apparent Maximum 90th 2 0.066 1.068 0.949-1.202 0.274 7473.785 0.214

Apparent Maximum 90th 3 0.050 1.052 0.934-1.184 0.406 7474.290 0.166

Apparent Maximum 90th 5 0.047 1.049 0.93-1.182 0.438 7474.379 0.159

Apparent Maximum 90th 10 0.012 1.012 0.895-1.145 0.846 7474.943 0.120

Normal Mean 99th 0 0.045 1.046 0.826-1.321 0.708 7474.840 0.126

Normal Mean 99th 1 0.006 1.006 0.792-1.273 0.961 7474.978 0.118

Normal Mean 99th 2 0.016 1.016 0.803-1.283 0.892 7474.962 0.119

Normal Mean 99th 3 -0.032 0.968 0.747-1.251 0.807 7474.920 0.121

Normal Mean 99th 5 0.009 1.009 0.761-1.333 0.949 7474.976 0.118

Normal Mean 99th 10 0.111 1.117 0.805-1.542 0.503 7474.535 0.147

Normal Minimum 99th 0 0.137 1.146 0.871-1.505 0.327 7474.026 0.190

Normal Minimum 99th 1 0.047 1.048 0.805-1.359 0.724 7474.856 0.125

Normal Minimum 99th 2 -0.071 0.931 0.704-1.225 0.614 7474.725 0.134

Normal Minimum 99th 3 0.010 1.010 0.752-1.349 0.947 7474.976 0.118

Normal Minimum 99th 5 -0.067 0.935 0.682-1.273 0.672 7474.800 0.129

Normal Minimum 99th 10 0.029 1.030 0.718-1.466 0.871 7474.954 0.119

Normal Maximum 99th 0 -0.036 0.965 0.709-1.305 0.819 7474.928 0.121

Normal Maximum 99th 1 -0.086 0.918 0.668-1.251 0.590 7474.688 0.136

Normal Maximum 99th 2 -0.064 0.938 0.683-1.28 0.689 7474.819 0.128

Normal Maximum 99th 3 0.018 1.018 0.725-1.422 0.915 7474.969 0.118

Normal Maximum 99th 5 0.040 1.041 0.744-1.447 0.814 7474.925 0.121
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Temperature Percentile Lag Coefficient OR 95% CI P-value AICc RelAIC

type measure

Normal Maximum 99th 10 0.089 1.093 0.779-1.525 0.604 7474.712 0.135

Normal Mean 95th 0 0.030 1.031 0.881-1.205 0.705 7474.837 0.126

Normal Mean 95th 1 0.013 1.013 0.867-1.182 0.874 7474.955 0.119

Normal Mean 95th 2 0.029 1.029 0.882-1.2 0.713 7474.845 0.126

Normal Mean 95th 3 0.024 1.024 0.879-1.192 0.761 7474.888 0.123

Normal Mean 95th 5 0.023 1.023 0.872-1.198 0.780 7474.903 0.122

Normal Mean 95th 10 -0.047 0.954 0.806-1.128 0.585 7474.681 0.137

Normal Minimum 95th 0 0.094 1.098 0.93-1.295 0.267 7473.755 0.217

Normal Minimum 95th 1 0.120 1.128 0.953-1.333 0.161 7473.024 0.313

Normal Minimum 95th 2 0.053 1.055 0.891-1.247 0.534 7474.595 0.143

Normal Minimum 95th 3 0.022 1.023 0.855-1.22 0.805 7474.920 0.121

Normal Minimum 95th 5 0.009 1.009 0.84-1.21 0.921 7474.970 0.118

Normal Minimum 95th 10 -0.022 0.979 0.795-1.202 0.838 7474.938 0.120

Normal Maximum 95th 0 -0.057 0.945 0.804-1.108 0.487 7474.496 0.150

Normal Maximum 95th 1 -0.029 0.971 0.824-1.143 0.726 7474.857 0.125

Normal Maximum 95th 2 -0.029 0.972 0.826-1.141 0.726 7474.857 0.125

Normal Maximum 95th 3 0.003 1.003 0.852-1.179 0.972 7474.979 0.118

Normal Maximum 95th 5 0.025 1.025 0.874-1.2 0.758 7474.886 0.123

Normal Maximum 95th 10 -0.076 0.927 0.782-1.097 0.381 7474.210 0.173

Normal Mean 90th 0 0.037 1.038 0.915-1.176 0.562 7474.644 0.139

Normal Mean 90th 1 0.083 1.087 0.959-1.231 0.192 7473.280 0.275

Normal Mean 90th 2 0.108 1.114 0.984-1.26 0.088 7472.082 0.501

Normal Mean 90th 3 0.090 1.094 0.965-1.238 0.159 7472.998 0.317

Normal Mean 90th 5 0.047 1.048 0.925-1.188 0.458 7474.430 0.155

Normal Mean 90th 10 0.017 1.017 0.892-1.159 0.803 7474.918 0.121

Normal Minimum 90th 0 0.098 1.103 0.974-1.25 0.122 7472.598 0.387

Normal Minimum 90th 1 0.114 1.120 0.989-1.268 0.073 7471.769 0.586

Normal Minimum 90th 2 0.131 1.140 1.006-1.29 0.039 7470.739 0.981

Normal Minimum 90th 3 0.124 1.132 1.00-1.281 0.051 7471.168 0.792

Normal Minimum 90th 5 0.128 1.137 1.003-1.288 0.045 7470.976 0.872

Normal Minimum 90th 10 0.040 1.040 0.914-1.184 0.548 7474.619 0.141

Normal Maximum 90th 0 -0.005 0.995 0.879-1.126 0.934 7474.973 0.118

Normal Maximum 90th 1 0.028 1.029 0.91-1.163 0.652 7474.777 0.130

Normal Maximum 90th 2 0.040 1.041 0.918-1.179 0.531 7474.588 0.143

Normal Maximum 90th 3 0.025 1.025 0.905-1.161 0.693 7474.825 0.127

Normal Maximum 90th 5 0.006 1.006 0.886-1.14 0.930 7474.973 0.118

Normal Maximum 90th 10 -0.013 0.987 0.864-1.127 0.850 7474.944 0.120
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Appendix 2: Details of Methods 

 6.4 Data Management

All study data was kept and to a large extent processed in a PostGIS 2.0 database. This consisted of a 

PostgreSQL 9.0.5 installation with PostGIS functions installed. The version of PostGIS used was 2.0 (SVN), 

revision 7789. Illustration 19 is a schematic of the database used for the developing the relationships 

between the different raw and derived data sets. The prefixes “geov” and “geor” represent geometry 

tables with vector and raster values, respectively. 

Standard SQL joins and updating methods were used to link tables and extract corresponding values. In 

the case of tables containing spatial vector or raster geometries, the PostGIS functions used are described 

below.

Deaths from the geov_address vector table were linked to census tracts in the geov_census_2001 vector 

table using the PostGIS ST_Intersects function, as follows:

UPDATE analysis.geov_address_32631

SET codi_cs_2001 = cs.codi_cs_int

FROM staging.geov_census_2001_32631 AS cs

WHERE ST_Intersects(analysis.geov_address_32631.the_geom, cs.geom);

where geov_address_32631 is a spatial table of vector values for each address, and 

geov_census_2001_32631 is a spatial vector table (Illustration 19) describing the census tracts in 

Barcelona (in schemas named “analysis” and “staging”, respectively). The number suffix “32631” identifies 

the tables as containing values in the EPSG:32631 spatial reference system. 

Values from the geor_zscores raster table at each address were extracted in a JOIN statement linking the 
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vector address position to a point on the raster layer and creating an on-the-fly table with the results, as 

follows:

JOIN (

SELECT v.id_address

, v.codi_cs_2001

, ST_Value(r.rast,1,v.the_geom) AS val

, ST_X(v.the_geom) as x

, ST_Y(v.the_geom) as y

FROM analysis.geov_address_32631 AS v 

JOIN analysis.geor_zscores AS r

ON ST_Intersects(v.the_geom, r.rast)

) AS zvals

where geov_address_32631 is a vector table containing the locations of each address, indexed by the 

id_address field, and geor_zscores is a table containing the geographical information for the raster of the 

averaged Landsat 7 z-scores (Illustration 19). The ST_Intersects function identifies the intersection of the 

two geometries (the address point on the vector layer and the corresponding cell on the raster layer), the 

ST_Value function returns the value at the address position from the raster and the ST_X and ST_Y 

functions return the x and y coordinates of the address. This temporary table, “zvals”, was then used to 

update values in the bs_deaths table. The final data for analysis was later extracted from the bs_deaths 

table into a comma separated values (CSV) file for analysis using R. 

 6.5 Regression

All regression analysis was done using the R statistical package (version 2.13.1) after exporting the 

processed study data from the PostGIS database to a CSV file. The following R packages were used: sp, 

spdep, rgdal, RANN, dlnm, splines and AICcmodavg. 

 6.5.1 Model

The glm() function was used to create a general linear model with a logit link for the regression analysis 

before adjusting for spatial autocorrelation, using the following R code structure:

fit <- glm(formula=<formula>, family=binomial(link=”logit”))

• Formula: the regression formula of the type “hrr0 ~ hat_tmin90_l2 +age +sex +pdens_km”.

• Family: as the dependent variable was binary, a binomial link function for the glm was used 
(family=binomial(link=logit) which is the default for the binomial family).

 6.5.2 Moran eigenvector GLM filtering

The ME() function, part of the spdep package, was used to generate the filtered set of eigenvectors.  The 

code for the filtering process in R was the following:

library(spdep)

lag <- ME(formula=<formula>, family=binomial(link=”logit”), alpha=0.05, 
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listw=lw_dd, data=d23)

where d23 was the subset of all mortality and weather data between the years 2000 and 2003 

(inclusive) and between April 1 and September 30 (inclusive). The formula was, in the reference case, 

hrr0 ~ hat_tmin90_l2 +age +sex +pdens_km

The ME function uses listw objects, which are weight lists, and all networks generated were converted to 

weight lists using the nb2listw() function with “W” row-standardized weighting (Tiefelsdorf et al 1999), as 

described in the Network Weighting section. 

The lag model was then reintroduced to the regression formula to produce the final results partially 

adjusted for spatial autocorrelation, with this code:

fit_spatial <- glm(formula=hrr0 ~ hat_tmi90_l2 +age +sex +pdens_km +fitted(lag), 
family=binomial(link=”logit”))

 6.6 Modeling Time Lag

It has been proposed for many years that heat-associated mortality shows non-linear effects over time, 

affecting mortality days after heat impacts, both through delayed mortality (Gosling et al. 2008; Bayentin 

et al. 2010; Kinney et al. 2008; Metzger et al. 2010) and the “harvesting” effect (Gosling et al. 2008; Metzger 

et al. 2010) of bringing forward imminent deaths, thus reducing subsequent mortality for an 

undetermined period.

The R module DLNM (Distributed Lag Non-linear Models) was used to profile the effects of heat across a 

range of temperatures and lag times, using the study data reorganized into a time series. 

 6.6.1 How it works

The DLNM module performs a fairly complex analysis, but its basic functionality is to calculate the 

effects of a factor using non-linear models across both a range of factor values and a range of time lags. 

DLNM was developed for risk factors that produce time-lagged effects, such as temperature and air 

pollution, and the documentation provides several examples about how to apply the package to these 

types of datasets. 

Starting with a vector of exposures xj, with j = 1...n, the basic formula (excluding other predictors) for a 

series of outcomes Yt with time t = 1...n is:

g (μ t )=α+ J ∑
j =1

s j (x tj ; βj )

where μ≡E (Y ) and g is a link function. The function sj smooths the variable xj and the parameter 

vector β. A set of basis functions can be defined for the relationship between x and g(µ), of which s is one, 

and this set of functions is called a basis. The matrix of variables x is transformed by the set of basis 

functions to create a new matrix of basis variables. These transformations can be more or less complex, 

depending on the functions chosen. At this point, the matrix of basis variables just describes the effect of 

the variable x.
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Another matrix q of basis variables can be defined, based on the delayed effects of the variable xt-l 

where t is the time of exposure and l is the lag time. By applying a set of basis functions describing lag 

effects to the original array x, a new matrix of time-lagged basis variables is created for lags.

Combining the two sets of basis functions creates a set of cross basis functions, which can be used to 

describe the behavior of the variable in three dimensions: the variable scale, the effect scale (as a risk 

ratio) and the lag scale. 

 6.6.2 Methods

The dataset was reorganized as a time series of days from 2000-04-01 to 2003-09-30 - the warm season 

- during the study period, with daily counts of deaths and and daily temperature measures. Apparent 

temperatures were only available for 2000-2003.

First, a crossbasis was established for both the variable and lag arrays (the basis function is internal, and 

called by the crossbasis function):

btmean = crossbasis(dts$tmean, vartype="bs", vardf=5, vardegree=2, lagdf=5, 
maxlag=5)

in this case for mean temperature, using a B-spline, five degrees of freedom in the variable and lag axes, 

and with a maximum lag of five days. The relationship between x and both the direct effect and the lag 

effect are non-linear, and the lag was defined as a natural spline (the default). Then, a general linear 

model with a quasi-poisson link is fitted to the data using only the temperature variable as an explanatory 

factor, and a natural spline of the date variable to adjust for regular time effects, as follows:

mtmean5 = glm(formula=deaths~btmean5 + ns(date_death, 7*14), 
family=quasipoisson(), data=dts)

The quasi-poisson is a type of poisson function which allows for greater variability in the data than a 

normal poisson function. Then the model is combined with the crossbasis to produce a prediction object:

ptmean5 <- crosspred(btmean5, mtmean5, by=1)

which could then be plotted.  

 6.7 Network Selection and Weighting

 6.7.1 Network Selection

The ME function takes a series of arguments and returns a lag object that can then be entered into the 

formula of a GLM regression as a fitted model. The following parameters to the ME function call are the 

ones that are relevant to this analysis:

• Formula: this is the same formula as the regression model for the lag model, in the form 
<dependent variable> ~ <independent variable1> + <independent variable 2>, etc. 

• Alpha: the threshold for the eigenvector selection stopping rule. The ME() process will include all 
eigenvectors up to and including the first eigenvector that exceeds this threshold. 

• Listw: a weighted list, created from a neighborhood network (nb) object, using the nb2listw() 
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function.

The two most important parameters are the alpha setting and the listw object. Higher alpha settings 

generate lag models that fit the data better, at the expense of greater computational resources. The 

individual vectors identified tend to have lower p-values than the threshold when included in the final 

regression model (typically, a threshold of 0.05 will produce a set of vectors all below a p-value of 0.001),  

and only the final vector will exceed this value. When using a higher threshold, there is also the danger of 

overfitting the model, in which case a backwards stepwise regression can be used to remove some of the 

vectors. This was not done in this study, as the alpha threshold chosen was high enough that all (or nearly 

all) eigenvectors produced were significant at the 0.001 level (the highest p-values produces were in the 

range of 0.0002, and the majority were significant to more than a dozen decimal places).

A more complex process is involved in the generation of a listw object. First, an nb object must be 

generated using one of several different methods (see Network Types, below). This object is then 

converted to a listw object, with the important parameters being whether the network should be made 

symmetrical (required in the case of Gabriel and Relative Neighbor networks, which normally do not 

allow more than one node in the same position) and whether zero-weight nodes should be allowed - this 

is necessary when the distance to the closest node is greater than the maximum distance set for a DNN, 

which creates a discontinuous network. The minimum distance needed to create a continuous network 

with the study dataset was 979.62 meters. The tests done allowed zero-weight nodes and set distance 

thresholds at 1000, 750 and 500 meters.

 6.7.1.1 Network Types

Dray, Legendre and Peres-Neto (2005) tested different spatial weighting matrices for their fit to a 

dataset using the ME eigenvector filtering techniques. They tested Delaunay triangulation (TRI), Gabriel 

networks (GAB), Relative Neighbor networks (RNN), minimum spanning trees (MST), and distance-based 

networks (DNN), and compared their results using the corrected Akaike Information Criteria (AICc) 

measure. Their best results were produced using DNN with specific types of weighting functions and RNN 

with binary weighting.

In this study, the networks that could be produced for analysis were GAB, RNN and DNN, although 

several of the networks generated required that zero-weight nodes be allowed. DNN networks had, in 

addition to the set of point coordinates, two distance parameters corresponding to the range of distance 

bounds within which points were considered neighbors. The lower bound was set to zero, so the upper 

bound functioned as a neighbor membership threshold. Because a distance below 980 meters created 

zero-weight nodes, they were allowed in the generation of the listw object for all distances. 

The ME function uses listw objects, which are weight lists, and all networks generated were converted to 

weight lists with “W”, row-standardized weighting (Tiefelsdorf et al 1999), as described in the following 

section, Network Weighting. 
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 6.7.1.2 Network Weighting

The weighting used when processing a network for inclusion in the eigenvector filtering process is very 

important (Dray, Legendre and Peres-Neto, 2006; Teifelsdorf, Griffith and Boots, 1999). The default 

weighting scheme used was the “W” row-standardized weighting scheme, although “B”, “C”, “U” and “S” 

weighting schemes were also tested. The coding schemes are derived from a n x m matrix combining the n 

nodes of the network to be studied, called G.

The “B” scheme is the basic binary association between two nodes (0 or 1, neighbors or not). If a node is 

within the radius of the selected distance from the test node, it is considered a neighbor and given a 

weight of one, otherwise it has weight zero. 

The “C” scheme is globally standardized over the connectivity of all the elements in G. The “W” scheme is 

row standardized, where each row in the matrix is the set of connections to a single node. “U” weights are 

equal to the “C” divided by the number of neighbors and the “S” scheme was devised by Tiefelsdorf et al. 

(1999) to stabilize variance. 

Tiefelsdorf et al. (1999) summarize the characteristics of the two principal schemes in this way: “Results 

show that the C-coding scheme emphasizes spatial objects with relatively large numbers of connections, such 

as those in the interior of a study region. In contrast, the W-coding scheme assigns higher leverage to spatial 

objects with few connections, such as those on the periphery of a study region.” (page 165). The S-coding 

scheme was devised to strike a balance between the properties of the W and U schemes.

All weighting options were tested on the same data set and compared based on AICc value. The B, C and 

U schemes produced exactly the same results, but otherwise the B weighting scheme showed the best fit 

to the data, with better AICc scores than the S and W schemes. It also has the advantage of being 

computationally simpler than some of the other schemes, but is more difficult to interpret. Appendix 3:

Moran's I Values shows the effects of different networks and weighting schemes on Moran's I values. The 

different weighting schemes compared (B, W and S) show similar results.

For the final model, W-weighting was chosen due to its familiarity and ease of interpretation. Unless 

stated otherwise, all regression models in this study used W-style row-standardized weighting.  

 6.7.1.3 Network Selected

The network type chosen for the analysis was a DNN (with W-weighting), for several reasons. First, the 

fixed-parameter GAB and RNN networks are computationally intensive, and the only way to simplify the 

required calculations was to sample the data rather than use the entire dataset. This was done for a 36% 

sample (2000 cases). The results are shown in the Other Network Types section, below. Adjusting the 

distance parameter of a DNN produces models that can be filtered using the ME function in a reasonable 

amount of time. Second, the interpretation of a DNN is fairly intuitive, and distance thresholds can be 

compared to the size of HRR areas. Third, using a DNN makes it possible to explore the effect of distance 

scaling on the performance of a regression model.
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 6.7.2 The effect of distance thresholds on the model

Table 19 shows the effect of reducing the maximum distance in a DNN model on spatially adjusted 

results for the full data set (Table 20 shows a slightly broader range of distances using a sample of cases). 

Distance thresholds are shown in the table, along with the average time taken for an analysis and the 

number of eigenvectors identified.

It was not possible to do extensive testing, but the tendency in these limited results was that the lower 

the distance threshold, the larger the number of significant eigenvectors in the matrix and the more 

demanding the filtering process. Based on the testing of small samples, there was a threshold between 

500-250 meters where the calculation of results became effectively impossible, even for a limited sample, 

and no results could be obtained for the 250 meter threshold.

One exception to the tendency toward increasing time and eigenvectors produced was the 750 meter 

threshold, which required slightly less time and produced slightly less eigenvectors than the 1000 meter 

threshold. 

Table 19: Results of distance threshold testing with best model (tmin90_l2)

Threshold Coefficient OR 95% CI P-value AICc RelAIC Hours eV

meters eigenvectors

1000 0.138 1.148 1.003-1.313 0.045 6618.893 2.67E-68 3.80 17

750 0.141 1.151 1.005-1.319 0.043 6516.797 3.95E-46 3.32 16

500 0.141 1.152 1.002-1.324 0.047 6307.707 1.00 6.69 26

All models tested at alpha=0.05 level, using W-weighting. OR = Odds Ratio, eV = eigenvectors.

The progression toward shorter distance thresholds produced models with better (lower) AICc scores,  

but the trend toward increasing significance in the p-values was not maintained as the fit improved, and 

in fact the reduction of the distance threshold resulted in a slight decrease in the significance of the 

results. This may indicate that models at the 750 meter level were an anomaly, or that this distance had 

some important characteristics that influenced the data analysis. In any case, the results remained 

significant across this range of distance thresholds (1000-500 meters), indicating that this association 

was robust.

 6.7.3 Other Network Types

To compare the DNN networks to GAB and RNN networks, a 36% sample (2000 points) was selected 

randomly from the dataset and analyzed in the tmin90_l2 model, with spatial autocorrelation adjustment. 

The results are shown in Table 20.
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Table 20: Results of a 36% (2000 point) sample, by network type and distance

Network Distance Coefficient OR 95% CI P-value AICc Hours eV

meters eigenvectors

GAB -- 0.367 1.443 1.084-1.924 0.012 1882.318 5.73 91

RNN -- 0.123 1.131 0.848-1.507 0.403 1835.285 6.86 94

DNN 1000 0.101 1.106 0.888-1.378 0.367 2461.055 0.23 8

DNN 750 0.132 1.141 0.912-1.427 0.248 2405.831 0.34 13

DNN 500 0.060 1.062 0.844-1.334 0.609 2359.156 0.89 22

DNN 50 6.95E+13 Inf Error 0 65990.130 0.55 10

All models tested at alpha=0.05 level, using W-weighting and a single random sample of 3000 cases from the 
study dataset. OR = Odds Ratio, eV = eigenvectors.

The same pattern as seen with the full dataset emerged with the distance-based models – shorter 

distances required more computing time to adjust for spatial autocorrelation and produced better fitting 

models with more eigenvectors. P-values were more unstable, and dipped at the 750 meter level, then 

rose again. The shorter distances provided a better fit for the data. 

The very best fit, based on AICc values, came from the RNN. The GAB network also provided a better fit 

than the DNN samples tested. These results, however, were at the cost of greater computing resources. 

Two important aspects of these types of networks to consider are the computational requirements for 

using them, as well the interpretation of the results. 

Another noteworthy result was for the 50m threshold. This model calculated quickly, had a terrible AICc  

value, and nonsense results. While it was not a useful result from the study perspective, it did show that 

smaller distance thresholds did not automatically provide a better fit or require more time to calculate in 

a mathematical progression – a point was reached where the network essentially collapsed as there were 

not enough points with neighbors. 
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Appendix 3: Moran's I Values

Moran's I values were calculated for all study variables used in the regression models.

Table 21: Moran's I values for study variables, by Network and Weighting Type

Network

Distance 

threshold Wt Variable MI P-Value

Gabriel na B Tmin 0.019 0.01135

Relative Neighbor na B Tmin 0.016 0.04565

Distance 1000 B Tmin -0.001 0.79863

Distance 750 B Tmin -0.001 0.70428

Distance 500 B Tmin -0.001 0.70684

Distance 250 B Tmin 0.004 0.10977

Distance 100 B Tmin 0.017 0.02227

Gabriel na W Tmin 0.019 0.02122

Relative Neighbor na W Tmin 0.016 0.07233

Distance 1000 W Tmin 0.000 0.58862

Distance 750 W Tmin -0.002 0.89187

Distance 500 W Tmin -0.004 0.94944

Distance 250 W Tmin 0.002 0.32095

Distance 100 W Tmin 0.008 0.20969

Gabriel na S Tmin 0.019 0.01420

Relative Neighbor na S Tmin 0.016 0.05217

Distance 1000 S Tmin -0.001 0.79696

Distance 750 S Tmin -0.001 0.82216

Distance 500 S Tmin -0.002 0.85473

Distance 250 S Tmin 0.004 0.14605

Distance 100 S Tmin 0.013 0.06907

Gabriel na B Tmax 0.012 0.07876

Relative Neighbor na B Tmax 0.013 0.07831

Distance 1000 B Tmax -0.002 0.94371

Distance 750 B Tmax -0.001 0.79048

Distance 500 B Tmax -0.003 0.93839

Distance 250 B Tmax -0.001 0.60661

Distance 100 B Tmax -0.001 0.53237

Gabriel na W Tmax 0.003 0.38555

Relative Neighbor na W Tmax 0.004 0.35300

Distance 1000 W Tmax -0.002 0.95315

Distance 750 W Tmax -0.002 0.90669

80



Network

Distance 

threshold Wt Variable MI P-Value

Distance 500 W Tmax -0.005 0.98392

Distance 250 W Tmax -0.005 0.84302

Distance 100 W Tmax -0.008 0.76452

Gabriel na S Tmax 0.007 0.21652

Relative Neighbor na S Tmax 0.008 0.20858

Distance 1000 S Tmax -0.002 0.95159

Distance 750 S Tmax -0.002 0.85315

Distance 500 S Tmax -0.004 0.96382

Distance 250 S Tmax -0.002 0.67120

Distance 100 S Tmax -0.003 0.63952

Gabriel na B Tmean 0.015 0.03489

Relative Neighbor na B Tmean 0.017 0.03364

Distance 1000 B Tmean -0.001 0.72275

Distance 750 B Tmean 0.000 0.50323

Distance 500 B Tmean -0.002 0.75725

Distance 250 B Tmean 0.004 0.14305

Distance 100 B Tmean 0.004 0.33398

Gabriel na W Tmean 0.011 0.11044

Relative Neighbor na W Tmean 0.014 0.09835

Distance 1000 W Tmean 0.000 0.44644

Distance 750 W Tmean -0.001 0.64685

Distance 500 W Tmean -0.003 0.91174

Distance 250 W Tmean 0.002 0.34135

Distance 100 W Tmean 0.000 0.48899

Gabriel na S Tmean 0.014 0.05882

Relative Neighbor na S Tmean 0.016 0.05642

Distance 1000 S Tmean -0.001 0.69942

Distance 750 S Tmean 0.000 0.58454

Distance 500 S Tmean -0.002 0.83698

Distance 250 S Tmean 0.003 0.16718

Distance 100 S Tmean 0.002 0.39466

Gabriel na B Age 0.072 0.00000

Relative Neighbor na B Age 0.086 0.00000

Distance 1000 B Age 0.020 0.00000

Distance 750 B Age 0.022 0.00000

Distance 500 B Age 0.027 0.00000

Distance 250 B Age 0.025 0.00000

Distance 100 B Age 0.022 0.00484
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Network

Distance 

threshold Wt Variable MI P-Value

Gabriel na W Age 0.040 0.00001

Relative Neighbor na W Age 0.035 0.00067

Distance 1000 W Age 0.022 0.00000

Distance 750 W Age 0.023 0.00000

Distance 500 W Age 0.031 0.00000

Distance 250 W Age 0.030 0.00000

Distance 100 W Age 0.021 0.02064

Gabriel na S Age 0.054 0.00000

Relative Neighbor na S Age 0.056 0.00000

Distance 1000 S Age 0.020 0.00000

Distance 750 S Age 0.021 0.00000

Distance 500 S Age 0.028 0.00000

Distance 250 S Age 0.027 0.00000

Distance 100 S Age 0.022 0.00682

Gabriel na B Sex 0.055 0.00000

Relative Neighbor na B Sex 0.066 0.00000

Distance 1000 B Sex 0.009 0.00000

Distance 750 B Sex 0.009 0.00000

Distance 500 B Sex 0.010 0.00000

Distance 250 B Sex 0.009 0.00463

Distance 100 B Sex 0.015 0.03711

Gabriel na W Sex 0.029 0.00095

Relative Neighbor na W Sex 0.024 0.01480

Distance 1000 W Sex 0.010 0.00000

Distance 750 W Sex 0.010 0.00000

Distance 500 W Sex 0.012 0.00000

Distance 250 W Sex 0.016 0.00023

Distance 100 W Sex 0.009 0.19461

Gabriel na S Sex 0.039 0.00000

Relative Neighbor na S Sex 0.040 0.00003

Distance 1000 S Sex 0.009 0.00000

Distance 750 S Sex 0.009 0.00000

Distance 500 S Sex 0.010 0.00000

Distance 250 S Sex 0.011 0.00228

Distance 100 S Sex 0.012 0.09174

Gabriel na B PDens-Km 0.669 0.00000

Relative Neighbor na B PDens-Km 0.743 0.00000

Distance 1000 B PDens-Km 0.171 0.00000
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Network

Distance 

threshold Wt Variable MI P-Value

Distance 750 B PDens-Km 0.211 0.00000

Distance 500 B PDens-Km 0.280 0.00000

Distance 250 B PDens-Km 0.415 0.00000

Distance 100 B PDens-Km 0.613 0.00000

Gabriel na W PDens-Km 0.665 0.00000

Relative Neighbor na W PDens-Km 0.710 0.00000

Distance 1000 W PDens-Km 0.208 0.000

Distance 750 W PDens-Km 0.250 0.000

Distance 500 W PDens-Km 0.330 0.000

Distance 250 W PDens-Km 0.466 0.000

Distance 100 W PDens-Km 0.590 0.000

Gabriel na S PDens-Km 0.665 0.000

Relative Neighbor na S PDens-Km 0.725 0.000

Distance 1000 S PDens-Km 0.180 0.000

Distance 750 S PDens-Km 0.221 0.000

Distance 500 S PDens-Km 0.293 0.000

Distance 250 S PDens-Km 0.427 0.000

Distance 100 S PDens-Km 0.601 0.000

Gabriel na B HRR0 0.552 0.000

Relative Neighbor na B HRR0 0.642 0.000

Distance 1000 B HRR0 0.113 0.000

Distance 750 B HRR0 0.134 0.000

Distance 500 B HRR0 0.166 0.000

Distance 250 B HRR0 0.268 0.000

Distance 100 B HRR0 0.474 0.000

Gabriel na W HRR0 0.520 0.000

Relative Neighbor na W HRR0 0.581 0.000

Distance 1000 W HRR0 0.117 0.000

Distance 750 W HRR0 0.143 0.000

Distance 500 W HRR0 0.183 0.000

Distance 250 W HRR0 0.284 0.000

Distance 100 W HRR0 0.474 0.000

Gabriel na S HRR0 0.528 0.000

Relative Neighbor na S HRR0 0.603 0.000

Distance 1000 S HRR0 0.115 0.000

Distance 750 S HRR0 0.138 0.000

Distance 500 S HRR0 0.173 0.000

Distance 250 S HRR0 0.275 0.000

Distance 100 S HRR0 0.474 0.000
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Appendix 4: Variable Correlations

Table 22: Correlations between study variables

Variable Regression Coefficient P-value

Dependent Independent type

Age linear

sex_m0_f1 6.840 0.00000

pdens_km 0.000 0.00017

hat_tmean90 1.155 0.15407

hat_tmin90 0.412 0.51413

hat_tmax90 -0.375 0.52884

Sex logistic

age 0.054 0.00000

pdens_km 0.000 0.00032

hat_tmean90 -0.109 0.45900

hat_tmin90 0.054 0.04188

hat_tmax90 0.022 0.36573

Population density linear

age -99.269 0.00017

sex_m0_f1 -2286.478 0.00032

hat_tmean90 -399.066 0.80267

hat_tmin90 314.740 0.80045

hat_tmax90 -364.094 0.75654

Mean temperature linear

age 0.000 0.15407

sex_m0_f1 -0.004 0.45900

pdens_km 0.000 0.80267

hat_tmin90 0.520 0.00000

hat_tmax90 0.459 0.00000

Minimum temperature linear

age 0.000 0.51413

sex_m0_f1 0.014 0.04188

pdens_km 0.000 0.80045

hat_tmean90 0.855 0.00000

hat_tmax90 -0.031 0.01303

Maximum temperature linear

age 0.000 0.52884

sex_m0_f1 0.007 0.36573

pdens_km 0.000 0.75654

hat_tmean90 0.849 0.00000

hat_tmin90 -0.35 0.01303
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Appendix 5: Spatially-Adjusted Regression Results

Table 23: Regression results after adjustment for spatial autocorrelation

Temperature Perc. Lag Coef. OR 95% CI P-value AICc RelAIC EV

type measure

Apparent Mean 90th 0 0.038 1.039 0.905-1.191 0.587 6520.603 0.149 16

Normal Mean 90th 0 0.038 1.039 0.905-1.191 0.587 6520.603 0.149 16

Apparent Minimum 90th 0 0.078 1.081 0.939-1.244 0.277 6519.718 0.232 16

Normal Minimum 90th 0 0.087 1.091 0.952-1.251 0.210 6519.329 0.282 16

Apparent Maximum 90th 0 0.023 1.023 0.899-1.164 0.728 6520.777 0.137 16

Normal Maximum 90th 0 0.000 1.000 0.873-1.144 0.995 6520.897 0.129 16

Apparent Mean 90th 1 0.100 1.105 0.963-1.267 0.154 6518.869 0.355 16

Normal Mean 90th 1 0.100 1.105 0.963-1.267 0.154 6518.869 0.355 16

Apparent Minimum 90th 1 0.139 1.149 1.001-1.32 0.048 6517.011 0.899 16

Normal Minimum 90th 1 0.123 1.131 0.987-1.296 0.076 6517.750 0.621 16

Apparent Maximum 90th 1 0.062 1.064 0.935-1.21 0.349 6520.021 0.199 16

Normal Maximum 90th 1 0.051 1.052 0.92-1.204 0.457 6520.344 0.170 16

Apparent Mean 90th 2 0.123 1.131 0.987-1.295 0.076 6517.765 0.616 16

Normal Mean 90th 2 0.123 1.131 0.987-1.295 0.076 6517.765 0.616 16

Apparent Minimum 90th 2 0.140 1.150 1.003-1.319 0.046 6516.910 0.945 16

Normal Minimum 90th 2 0.141 1.151 1.005-1.319 0.043 6516.797 1.000 16

Apparent Maximum 90th 2 0.079 1.082 0.951-1.232 0.231 6519.463 0.264 16

Normal Maximum 90th 2 0.063 1.066 0.929-1.222 0.364 6520.075 0.194 16

Apparent Mean 90th 3 0.093 1.097 0.957-1.257 0.184 6519.131 0.311 16

Normal Mean 90th 3 0.093 1.097 0.957-1.257 0.184 6519.131 0.311 16

Apparent Minimum 90th 3 0.134 1.143 0.996-1.312 0.057 6517.295 0.780 16

Normal Minimum 90th 3 0.128 1.137 0.992-1.302 0.065 6517.488 0.708 16

Apparent Maximum 90th 3 0.056 1.057 0.928-1.204 0.404 6520.201 0.182 16

Normal Maximum 90th 3 0.045 1.046 0.913-1.199 0.516 6520.476 0.159 16

Apparent Mean 90th 5 0.122 1.130 0.917-1.207 0.085 6517.927 0.568 16

Normal Mean 90th 5 0.122 1.130 0.917-1.207 0.085 6517.927 0.568 16

Apparent Minimum 90th 5 0.124 1.132 0.983-1.299 0.077 6517.783 0.611 16

Normal Minimum 90th 5 0.050 1.051 0.986-1.299 0.459 6520.350 0.169 16

Apparent Maximum 90th 5 -0.002 0.998 0.921-1.198 0.978 6520.897 0.129 16

Normal Maximum 90th 5 0.051 1.052 0.869-1.146 0.469 6520.373 0.167 16
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